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Introduction

Today I’ll be presenting work completed for a grant to produce 
auxiliary materials for use with open source textbooks.


The grant was provided by Affordable Learning Georgia.


Invaluable assistance with the grant process was provided by 
Leonard and Glenn at Perimeter College’s Office of Grants 
Development and Administration.


I produced Mathematica applets, a Brightspace/iCollege 
module, and a Workbook (PDF) for Calculus 1.


The materials were first piloted in Spring 2021 (enrollment: 5).


I continue to teach with and revise them.

https://www.affordablelearninggeorgia.org/
https://perimeter.gsu.edu/grants/
https://perimeter.gsu.edu/grants/


Materials produced

Today I’ll be presenting work completed for a grant to produce 
auxiliary materials for use with open source textbooks.


The grant was provided by Affordable Learning Georgia.


Invaluable assistance with the grant process was provided by 
Perimeter College’s Office of Grants Development and 
Administration.


I produced Mathematica applets, a Brightspace/iCollege 
Module, and a Workbook (PDF) for Calculus 1.


The materials were first piloted in Spring 2021 (enrollment: 5).


I continue to use and revise them.
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Motivation for the project

Project narrative

“Improving Student Performance in Calculus”

Speakers: James Williams, Behnaz Rouhani, Somaya Muiny

Perimeter College Faculty Development Day, Oct. 18, 2019


Multiple choice assessments were given in Spring 2018 and Spring 2019


Problem areas in Calculus 1:

•	 Use the graph of y = f (x) to determine the lefthand limit as x→1–

	 —	In 2018, 75% answered correctly

	 —	In 2019, 65% answered correctly


•	 Optimization problem: Find dimensions that maximize the area of a rectangular region.

	 —	In 2018, 55.1% answered correctly

	 —	In 2019, 60.8% answered correctly

	 —	In 2018, statement of problem was “very wordy”

	 —	“Performance went up when we added a picture.”



Skills for exercises in problem areas

Project narrative

Part of my job as a teacher is 
to get my students to see the 
pictures I have in my head.


These pictures often have 
moving parts.



§2.2, “First example of a limit”

§2.2, “Visualizing one-sided

and two-sided limits”

§2.5, “A limit that does not exist”

Finding the 
limit of a 
function from 
its graph:


graphical


analytic


kinesthetic

Skills for exercises in problem areas

Project narrative



Skills for exercises in problem areas
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w wℓ ℓ

perimeter = 8 A(w) = (4 - w)w

An 8-inch long pipe cleaner is bent into the shape of a rectangle.
What are the dimensions of the rectangle with maximum area?

1 2 3 4
w

1

2

3

4

A(w) = (4-w)w

§4.7, “Applied optimization problems”

Optimization 
problems:


strategic


analytic


graphical


kinesthetic

Project narrative



Original plan

Original plan:


Create a few applets that provide hands-on experience with 
challenging concepts and techniques


Animation: Show the “moving parts” of definitions and 
exercises actually moving


Manipulation: Let students interact via sliders, click to add 
to a picture, drag to change a picture, start and stop 
animations, …


Abstraction: Facilitate “big picture” insights through 
pictures, animations, and discovery through experimentation

Project narrative



Pandemic

Project narrative



Original plan

Project narrative

New plan!


Provide a self-contained course in the form of a 
Workbook suitable for use with various or mixed 
methods (face-to-face, “hybrid,” online)


Integrate the applets into the text of the Workbook


Build a Brightspace/iCollege Course Module where all 
course materials can be accessed


“Sandbox” design: facilitate unguided exploration; make 
applets as inviting and self-explanatory as possible



Timeline

Project narrative

semesters of pilot enrollment

Spring 2021 5

Summer 2021 11

Fall 2021 14

semesters of grant

Summer 2020

Fall 2020

Spring 2021

Grant funding period

Classroom pilot



Applets and Workbook

Course materials

The bulk of the grant work consisted of creating 
Mathematica applets and compiling the Workbook.


I’ll present the applets and the Workbook in detail 
after a quick look at the other course materials:


iCollege Course Module


OpenStax’s Calculus textbook


Knewton online assessments



Brightspace/iCollege Module

Course materials

iCollege is GSU’s Brightspace-based online 
learning platform.


iCollege Course Modules…


allow all file types

do not disappear at a corporation’s whim

can be exported (Common Cartridge)


All course materials are accessible to students 

through the iCollege Course Module.



Brightspace/iCollege Module

Course materials

The first “Lesson” in the course is shown 
below.



Brightspace/iCollege Module

Course materials

Since the textbook is open source, it’s easy to 
link directly to the reading.



Brightspace/iCollege Module

Course materials

Links to applets I wrote appear in iCollege 
alongside links to applets hosted outside USG.



OpenStax’s Calculus textbook

Course materials

Students can 
view and add 
annotations 
to the 
textbook for 
free.


A print copy 
is also 
available.



OpenStax’s Calculus textbook

Course materials

The textbook has 
adequate exposition 
and problem sets.


But my students 
tended to engage at 
a higher level with 
the online 
homework than 
with the textbook.



Knewton for online assignments

Course materials

Knewton features 
adaptive learning.


My students love it.


They especially 
appreciate the just-
in-time review of 
topics from earlier 
math classes.



Participating Instructors: Kouok Law, Tirtha Timisina, Julie La Corte

Open source Calculus at GSU Dunwoody

A pilot program 
unrelated to this grant 
gives free access to 
Knewton for students 
in our open source 
sections of Calculus.


We hope to extend 
the pilot program to 
Calculus 2 and 3.



Like textbooks

Equity means giving people what they need

Problem:


How many hours will a student need to work in order to pay for 
their Calculus textbook, assuming they make minimum wage?


Solution:


In this class, the total cost to the student for course materials is 
$0, so the textbook will cost the student zero hours of labor, 
whether they’re being paid $7.25 (Federal Fair Labor Standards Act), $5.15 
(Georgia minimum wage) or $2.13 (Georgia minimum wage for tipped employees) per hour.



Accomodations and administration

Equity means giving people what they need

Additional equity concerns:


Access for the visually impaired


Access to a PC or laptop


Unplanned-for unknowns


Administrative concerns:


“Who will I call for technical support?”


“Can I be compensated for reinventing my course?”




Workbook

Lessons originally drew on 
several textbooks


Future revision will eliminate 
all material from unknown 
and/or proprietary sources


Until all such material is 
eliminated, the Workbook is 
still a draft

D
R
A
F
T

Calculus I Workbook
Julie C. La Corte, PhD

Georgia State University

Dunwoody Campus

For use with OpenStax Calculus, Volume 1

Created: September 25, 2020
Last revised: September 30, 2021

This document is covered by a Creative Commons Attribution-NonCommercial 4.0 International public license.



Introducing the Inverse Function 
Theorem 


Linear Approximation to a Function


Finding Critical Numbers (4-in-one)


Introducing the Mean Value Theorem


Finding Intervals of Increase/Decrease 
(x4)


Applied Optimization Problems (x3)

Original applets

Applets

Applets written for grant, covering 11 textbook sections:

Method of Exhaustion


First Example of a Limit


Visualizing One-Sided and Two-
Sided Limits


The Limit of sin(1/x) as x → 0


Teaching the Definition of the Limit 
of a Function


Derivative Sandbox


Introducing the Chain Rule



Original applets, categorized by intended use

Applets

Guided discussion:

Method of Exhaustion


First Example of a Limit


Visualizing One-Sided and Two-
Sided Limits


Introducing the Chain Rule


Introducing the Inverse Function 
Theorem 


Linear Approximation to a Function


Introducing the Mean Value 
Theorem

Several of the applets were 
intended for in-class use.


The Workbook typically 
includes still screenshots of 
each applet.


Interested students can 
animate and manipulate 
the pictures in the 
Workbook by exploring the 
applets.



Original applets, categorized by intended use

Applets

Derivative Sandbox

Open exploration:

Self-guided activities:

Teaching the Definition of the Limit 
of a Function


The Limit of sin(1/x) as x → 0


The “Derivative Sandbox” 
encourages free 
exploration.


Using this applet, students 
tended to discover the 
relation between turning 
points and zeros of f’ on 
their own.



Original applets, categorized by intended use

Applets

Derivative Sandbox

Open exploration:

Self-guided activities:

Teaching the Definition of the Limit 
of a Function


The Limit of sin(1/x) as x → 0


Other applets display explicit 
questions.


For example, one applet asks 
the student to find a δ > 0 
satisfying the “𝜀 challenge” 
in the definition of the limit 
of f(x) as x → a.


The values of a, δ, and 𝜀 
can all be manipulated by 
the student using sliders.



Original applets, categorized by intended use

Applets

Strategy guides:

Finding Critical Numbers (4-in-one)


Finding Intervals of Increase/Decrease (x4) 


Applied Optimization Problems (x3)

A final set of applets guides the student through multipart 
problems, emphasizing the “Big Picture” strategy.


For instance, after students have found the critical numbers of 
several functions by hand, they are then directed to the applets, 
where the steps are presented visually without calculations.



Original applets, categorized by intended use

Applets

Strategy guides:

Finding Critical Numbers (4-in-one)


Finding Intervals of Increase/Decrease (x4) 


Applied Optimization Problems (x3)

Students report that…


these “strategy guide” applets help them practice the specific 
exercises whose solutions appear in the Workbook, and


these applets remind them how to organize their work when 
working different exercises of the same type.



1. Method of Exhaustion

Applets
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The first section in 
the OpenStax 
textbook (and the 
Workbook) is a 
breezy tour of the 
limiting processes 
encountered in 
Calculus 1.



1. Method of Exhaustion

Applets
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The first example of 
a limiting process my 
students see is the 
classical problem of 
exhausting the area 
of a circle by an 
inscribed regular 
n-gon.



1. Method of Exhaustion

Applets
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Within the first few 
minutes of class, 
students are thus 
exposed to the idea 
of a process that can 
be extended 
indefinitely, with an 
associated error term 
that approaches 0.



1. Method of Exhaustion

Applets
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The decomposition 
of the n-gon into 
triangles obviously 
foreshadows 
Riemann sums.


The first section in 
the OpenStax 
textbook makes this 
foreshadowing 
explicit.

§5.2

• Riemann sums

Objectives:

– Provide an animated visualization of left-endpoint, right-endpoint, and mid-

point Riemann sums using n rectangles as n increases
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1. Method of Exhaustion

Applets

The decomposition 
of the n-gon into 
triangles obviously 
foreshadows 
Riemann sums.


The first section in 
the OpenStax 
textbook makes this 
foreshadowing 
explicit.



1. Method of Exhaustion

Applets

The Workbook contains screenshots of the animations which 
students see during lecture.

We’re not going to solve the tangent problem in this lesson. For now, I just want you to get a
sense of what algebra can’t do that calculus can.

Definition. Let y = f(x) be a function.

• The instantaneous rate of change of a function f(x) at x = a is the value to which
the average rate of change on intervals [a, b] approaches as b approaches a, provided that
there is such a value.

• The tangent line at x = a is the line through the point
�
a, f(a)

�
whose slope is the

instantaneous rate of change at x = a.

The method of exhaustion and the area problem

Let’s ask another question for which algebra and geometry can’t give us an exact answer. What’s
the area under the curve y = x2 from x = 0 to x = 1?

Again, we can come up with an approximation.

The idea here is an ancient one. The Greeks figured out how to approximate the area of a circle
using what they called the method of exhaustion:

���

We can approximate the area under a curve by trying to “exhaust”—that is, cover all of—the area
by rectangles.

���

1
x

1

y = x2

1
x

1

y = x2

1
x

1

y = x2

1
x

1

y = x2

We can’t actually ever cover all the area with rectangles because one side of the region is curved.

But if you know what a pixel is, you understand that we can get pretty close to a curved shape using
blocks, provided that we make the blocks small enough to fit in a large number of them.

In the case of finding the area under a curve, we take more and more rectangles, thinner and thinner.
The total area of all the rectangles becomes a better approximation of the actual area.

As we take more and more, thinner and thinner rectangles, we know that the total area homes in
on some number—namely, the actual area under the curve. But to find that number exactly, we
need calculus. Geometry and algebra can’t do the job.

Limiting processes

What we’ve seen today are two examples of what we might call limiting processes.

• In the case of the area under a curve, we ask whether the total area of the rectangles “homes
in” on some number—which we’ll learn is called a limit—as the number of rectangles becomes
infinitely large.

• In the case of instantaneous velocity, we ask whether the slope of the secant line through two
points homes in on some number—a limit—as the distance between the two points becomes
infinitely small.

In calculus, we learn how to calculate with infinities. We find out that it’s not as hard as it sounds.
But you can understand why it took thousands of years for human beings to figure out how to do
it. For the ancient Greeks, infinity was a mysterious, mystical concept. Honestly, infinity seems
mysterious and mystical to most people—at least at first.

Infinity was tamed by Newton and Leibniz when they discovered the methods of calculus. You will
learn how to tame the infinite, too. Does that sound impressive? Taming the infinite sounds pretty
impressive to me.

But, you may wonder, what’s the point of it? What’s it useful for? How will calculus help me when
I’m working at a job in marketing, or in engineering, or in psychology, or in the social sciences?

Calculus is the mathematics of change. Whatever career you’re interested in, change plays some
role.

• When your company raises the price of a product they’re selling, how will that change the
number of units you sell? That’s the idea of marginal demand, which we calculate the same
way as instantaneous velocity.
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2. Determining the Limit of a Function from its Graph

Applets

Finding a limit graphically was a 
known trouble spot for our 
students.


This applet allows the student 
and/or instructor to move x using 
the slider.
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2. Determining the Limit of a Function from its Graph

Applets

As x moves, the applet updates the 
distance between f(x) and the limit 
of f(x) as x → a.
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2. Determining the Limit of a Function from its Graph

Applets

The play button animates x. The 
speed and direction of animation 
can be controlled with other 
buttons.
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Applets

Being able to move x and the 
corresponding point (x, f(x)) 
simultaneously with a slider 
significantly reduces handwaving.

2. Determining the Limit of a Function from its Graph



Downloading from Wolfram Demonstrations Project

Applets

2-5 Teaching the Definition of

the Limit of a Function.nb

The first applet 
students were intended 
to download and 
experiment with on 
their own is published 
on Wolfram’s website.



Downloading from Wolfram Demonstrations Project

Applets

2-5 Teaching the Definition of

the Limit of a Function.nb

The “.NB” file is the source 
code.


Mathematica is required to 
edit it.



Downloading from Wolfram Demonstrations Project

Applets

2-5 Teaching the Definition of

the Limit of a Function.nb

2-5 Teaching the Definition of

the Limit of a Function.cdf
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a = 5
f(a) = 1.
D = 3
E = 0.4

How close must the input x be to a so that the corresponding output f(x) is within E of L?

Students can download a “.CDF” version 
(which requires only a free player) 
through iCollege.
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a = 5
f(a) = 1.
D = 3
E = 0.4

How close must the input x be to a so that the corresponding output f(x) is within E of L?

Formal Definition of the Limit of a Function

Applets

The Workbook lesson on the formal (𝜀-δ) definition of the limit 
relies heavily on applets.
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Formal Definition of the Limit of a Function

Applets

In a face-to-face class, 
I’d begin the lesson by 
illustrating how to 
interpret an inequality 
of the form


|w – a| < c


using a number line 
and a piece of string.

Workbook Lesson 5
§2.5, The Epsilon-Delta Definition of a Limit

Last revised: 2021-06-15 07:33

Objectives

• Interpret an inequality of the form 0 < |x� a| < c as a statement about the distance between x and a.

• Use a table of values to estimate the limit of a function or to identify when the limit does not exist. (Moved
from Lesson 2, §2.2)

• Describe the idea behind the epsilon-delta definition of a limit.

• Apply the epsilon-delta definition to find the limit of a function.

• Describe the epsilon-delta definitions of one-sided limits and infinite limits.

• Use the epsilon-delta definition to prove the limit laws.

Inequalities representing distance

The distance between two numbers w and a is |w � a| � 0.

Let c > 0. The inequality
|w � a| < c

means that the distance |w�a| between w and a is less than c. (We use the absolute value bars be-
cause the di↵erence w�a might be negative, while distance is by definition never negative.)

Anchoring one end of a piece of string at the purple point on the number line below, pinch o↵ a
length of string—call the length c—and swing it around the purple point like a compass to see why
c is sometimes called the “radius” of the inequality.

Ex. 1. Where can x be on the number line if

0 < |x� 7| < 2?

Answer in words, or by graphing on the number line.

Ex. 2. If |w � a| = 0, what must be true about w and a?



Formal Definition of the Limit of a Function

Applets

“Hybridizing” the 
Lesson meant asking 
the student to do for 
themselves what I 
might not be 
physically present to 
do for them.


The text (in red) 
prompts the student 
to build their inuition 
using string.

Workbook Lesson 5
§2.5, The Epsilon-Delta Definition of a Limit

Last revised: 2021-06-15 07:33

Objectives

• Interpret an inequality of the form 0 < |x� a| < c as a statement about the distance between x and a.

• Use a table of values to estimate the limit of a function or to identify when the limit does not exist. (Moved
from Lesson 2, §2.2)

• Describe the idea behind the epsilon-delta definition of a limit.

• Apply the epsilon-delta definition to find the limit of a function.

• Describe the epsilon-delta definitions of one-sided limits and infinite limits.

• Use the epsilon-delta definition to prove the limit laws.

Inequalities representing distance

The distance between two numbers w and a is |w � a| � 0.

Let c > 0. The inequality
|w � a| < c

means that the distance |w�a| between w and a is less than c. (We use the absolute value bars be-
cause the di↵erence w�a might be negative, while distance is by definition never negative.)

Anchoring one end of a piece of string at the purple point on the number line below, pinch o↵ a
length of string—call the length c—and swing it around the purple point like a compass to see why
c is sometimes called the “radius” of the inequality.

Ex. 1. Where can x be on the number line if

0 < |x� 7| < 2?

Answer in words, or by graphing on the number line.

Ex. 2. If |w � a| = 0, what must be true about w and a?



3. The Limit of sin(1/x) as x → 0

Applets

Next, I’d mislead the students into incorrectly guessing the 
value of the limit of sin(1/x) as x → 0, using a table of values.

Ex. 3. Graph the set of numbers w on the number line such |w � 3|  1.

Guessing the limit of a function using a table of values

Ex. 4. Guess the value of lim
x!0

sin x

x
using only a calculator.

Taking x closer and closer to 0, we find that:

x
sin(x)

x
±1. 0.841471
±0.5 0.958851
±0.4 0.973546
±0.3 0.985067
±0.2 0.993347
±0.1 0.998334
±0.05 0.999583
±0.01 0.999983
±0.005 0.999996

Guess: lim
x!0

sinx

x
= 1

(Notice that the function
sinx

x
is undefined when x = 0.)

We showed in an earlier Lesson this guess is correct.

Ex. 5. Guess the value of lim
x!0

sin
1

x
.

Taking x closer and closer to 0, we find that:

x sin
1

x

± 1
⇡ 0

± 1
2⇡ 0

± 1
3⇡ 0

± 1
4⇡ 0

± 1
5⇡ 0

± 1
10⇡ 0

± 1
100⇡ 0

Guess: lim
x!0

sin
1

x
= 0

This time our guess is wrong.

Can you explain why by looking at the graph of sin
1

x
?



3. The Limit of sin(1/x) as x → 0

Applets

Then I’d say…

Ex. 3. Graph the set of numbers w on the number line such |w � 3|  1.

Guessing the limit of a function using a table of values

Ex. 4. Guess the value of lim
x!0

sin x

x
using only a calculator.

Taking x closer and closer to 0, we find that:

x
sin(x)

x
±1. 0.841471
±0.5 0.958851
±0.4 0.973546
±0.3 0.985067
±0.2 0.993347
±0.1 0.998334
±0.05 0.999583
±0.01 0.999983
±0.005 0.999996

Guess: lim
x!0

sinx

x
= 1

(Notice that the function
sinx

x
is undefined when x = 0.)

We showed in an earlier Lesson this guess is correct.

Ex. 5. Guess the value of lim
x!0

sin
1

x
.

Taking x closer and closer to 0, we find that:

x sin
1

x

± 1
⇡ 0

± 1
2⇡ 0

± 1
3⇡ 0

± 1
4⇡ 0

± 1
5⇡ 0

± 1
10⇡ 0

± 1
100⇡ 0

Guess: lim
x!0

sin
1

x
= 0

This time our guess is wrong.

Can you explain why by looking at the graph of sin
1

x
?

“This example shows that using a table of values 
to find a limit may mislead us.”



3. The Limit of sin(1/x) as x → 0

Applets

The Workbook walks the student through what I would have 
done in person.

-0.5 0.5
�

-1.0

-0.5

0.5

1.0

�(�) = sin(1/x)

There’s something seriously wrong with our “informal” definition of a limit—it misleads us

into giving an incorrect answer. The limit of sin
1

x
as x ! 0 does not exist.

In the next section of this Lesson, we will revise our informal definition of

lim
x!a

f(x)

and give a precise definition that is reliable in all cases.

Formal definition of limit

Let’s get a more intimate understanding of the concept of a limit before we look at the true
definition.

(See applet on iCollege: “Epsilon-delta definition of limit”)

Here is the graph of a function. Let’s not worry about what the formula for this function is.



3. The Limit of sin(1/x) as x → 0

Applets

In person, I let this animation play at terrifically slow speed 
while asking the students what they think the limit is as 
x → 0.
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3. The Limit of sin(1/x) as x → 0

Applets

While x creeps along, we chat about the fact that the limit 
must be a single number, if it exists.
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3. The Limit of sin(1/x) as x → 0

Applets

We discuss the fact that the function takes on the values 1 
and –1 again and again as x → 0.
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3. The Limit of sin(1/x) as x → 0

Applets

Suspense builds in the classroom… 

�

��������

���� �

�

� (�)

-��� ���
�

-���

-���

���

���

�(�) = sin(1/x)

� =
�
π

→ �(�) = �

� =
�
� π

→ �(�) =- �

� =
�
� π

→ �(�) = �

� =
�
� π

→ �(�) =- �

���� ��� �� ���
����� ���

�→�
�(�)�



�

��������

���� �

�

� (�)

-��� ���
�

-���

-���

���

���

�(�) = sin(1/x)

� =
�
π

→ �(�) = �

� =
�
� π

→ �(�) =- �

� =
�
� π

→ �(�) = �

� =
�
� π

→ �(�) =- �

���� ��� �� ���
����� ���

�→�
�(�)�

3. The Limit of sin(1/x) as x → 0

Applets

…but it soon becomes 
obvious that the value of 
f(x) is not “homing in” 
on any single number as 
x approaches 0.



�

��������� � > �

������ � > �

���� ��������� (�)

���� ������ (�)

�

�

-��-�-�-�-�-�-�-�-�-� � � � � � � � � � ��
�

-���

���

���

���

���

���

� = �(�)

�

�
� (�)

a = 5
f(a) = 1.
D = 3
E = 0.4

How close must the input x be to a so that the corresponding output f(x) is within E of L?

4. Formal Definition of the Limit of a Function

Applets

“Imagine an old-
fashioned radio with a 
knob you turn to change 
the station. You don’t 
have to tune the knob to 
exactly the right 
frequency. Within a 
certain tolerance will be 
close enough to make 
the radio station come in 
clearly.”



4. Formal Definition of the Limit of a Function

Applets

“Imagine an old-
fashioned radio with a 
knob you turn to change 
the station. You don’t 
have to tune the knob to 
exactly the right 
frequency. Within a 
certain tolerance will be 
close enough to make 
the radio station come in 
clearly.”

A point
�
a, f(a)

�
on the graph is marked.

For what x-values is the output f(x) near f(a)?

You might say, well, how near do you want it? (Set a = 5 in the applet.) Let’s say I want the
output to be within four tenths of f(a) = 1. (Set E = .4 in the applet.)

�

�

��������� � > �
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���� ��������� (�)

���� ������ (�)

e

e

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10
x

-0.5

0.5

1.0

1.5

2.0

2.5

y = f(x)

a

L
f(a)

a = 5
f(a) = 1.
D = 3
E = 0.4

How close must the input x be to a
so that the corresponding output f(x) is within E of L?

Imagine an old-fashioned radio with a knob you turn to change the station. You don’t have to tune
the knob to exactly the right frequency. Within a certain tolerance will be close enough to make
the radio station come in clearly.

So how close to a do our x-values have to be to give us output values that are all within the
tolerance shown? Is it enough to be within 3 units? (Set D = 3 in the applet.)
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d d

e
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-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10
x

-0.5

0.5

1.0

1.5

2.0

2.5

y = f(x)

a

L
f(a)

a = 5
f(a) = 1.
D = 3
E = 0.4

How close must the input x be to a
so that the corresponding output f(x) is within E of L?

What about within 1 unit? (Set D = 1 in the applet.)

But 2 is no good—there are x values that give us outputs that aren’t within the tolerance. (Set
D = 2 in the applet to see, then go back to D = 1.)

Let’s give this margin of error along the x-axis a name—we’ll call D = 1 the margin. Clearly, any
smaller number will serve as a suitable margin, too.
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a = 5
f(a) = 1.
D = 3
E = 0.4

How close must the input x be to a so that the corresponding output f(x) is within E of L?

4. Formal Definition of the Limit of a Function

Applets

In non-pandemic 
times, I’d ask a 
student to work the 
controls while I guide 
class discussion.
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a = 5
f(a) = 1.
D = 1.01
E = 0.4

How close must the input x be to a so that the corresponding output f(x) is within E of L?

4. Formal Definition of the Limit of a Function

Applets

The change in color 
from red to green 
indicates that a 
suitable 𝛿 has been 
found for the given 𝜀.



4. Formal Definition of the Limit of a Function

Applets
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a = 5
f(a) = 1.
D = 1.01
E = 0.4

How close must the input x be to a so that the corresponding output f(x) is within E of L?

The text in the 
Workbook attempts 
to capture the feel of 
an in-person class. 
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a = 5
f(a) = 1.
D = 1.01
E = 0.4

How close must the input x be to a so that the corresponding output f(x) is within E of L?

4. Formal Definition of the Limit of a Function

Applets
Well, is there some D I could choose to make this fact true again? Is there some D so that the
portion of the graph within the blue stripe, lies entirely within the red stripe?

Tinker with the slider and try to find a D that works. . .

Now let me ask you this. Is it the case that, no matter what E I pick, I can always pick a margin
D so small that the fact on the board holds true?

That is, can I always make the margin stripe so small that the portion of the graph it contains is
entirely contained in the yellow stripe—no matter how narrow I make the yellow stripe?

Yes. And this is the idea of a limit.

Formal definition. The statement
lim
x!a

f(x) = L

(in words: “the limit of f(x) as x approaches a is L”) means that, given any tolerance E > 0,
there exists some margin D > 0 such that

��f(x)� L
�� < E

whenever
0 < |x� a| < D.

+ We don’t care what happens when x = a.

Note: Most authors use the Greek letters � and " in the above definition rather than the Roman
letters D and E. (Of course, the names of variables don’t matter in mathematics!)

Ex. 7. Use the graph provided below to complete the statement:

|f(x)� 2| < whenever < x < .
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0.0

0.5

1.0

1.5
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2.5

input x

ou
tp
ut
f(x

)
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a = 0
L = 0.367879

How close must the input x be to a so that the corresponding output f(x) is within E of L?

4. Formal Definition of the Limit of a Function

Applets

The function graphed 
in the applet has a 
removable 
discontinuity to 
facilitate discussion of 
the case


                      .lim
x→a

f(x) != f(a)



4. Formal Definition of the Limit of a Function

Applets

On an exam, 
most students 
correctly answered 
a problem of this 
type:

Well, is there some D I could choose to make this fact true again? Is there some D so that the
portion of the graph within the blue stripe, lies entirely within the red stripe?

Tinker with the slider and try to find a D that works. . .

Now let me ask you this. Is it the case that, no matter what E I pick, I can always pick a margin
D so small that the fact on the board holds true?

That is, can I always make the margin stripe so small that the portion of the graph it contains is
entirely contained in the yellow stripe—no matter how narrow I make the yellow stripe?

Yes. And this is the idea of a limit.

Formal definition. The statement
lim
x!a

f(x) = L

(in words: “the limit of f(x) as x approaches a is L”) means that, given any tolerance E > 0,
there exists some margin D > 0 such that

��f(x)� L
�� < E

whenever
0 < |x� a| < D.

+ We don’t care what happens when x = a.

Note: Most authors use the Greek letters � and " in the above definition rather than the Roman
letters D and E. (Of course, the names of variables don’t matter in mathematics!)

Ex. 7. Use the graph provided below to complete the statement:

|f(x)� 2| < whenever < x < .
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5. Derivative Sandbox

Applets
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The “Derivative 
Sandbox” allows 
the student to 
freely experiment 
with the shape of 
a graph in order 
to see how the 
change impacts 
the first and 
second derivatives.



5. Derivative Sandbox

Applets

The crosshairs

can be dragged 
to bend the 
shape of the 
graph.

���� �

���� ��

���� ���

������ � ������ � ������ � ������ �

� � � � �
�

�

�

�

�

�



5. Derivative Sandbox

Applets

Four presets are 
provided (linear, 
quadratic, 
cubic, quartic).



5. Derivative Sandbox

Applets

Even without 
prompting, 
students soon 
notice the 
orange dots 
which appear 
whenever a 
turning point is 
introduced.



5. Derivative Sandbox

Applets

In class, the 
graph of f ’ can 
be hidden and 
revealed 
strategically by 
the instructor 
for discussion 
purposes.

Workbook Lesson 7
§3.2, The Derivative as a Function

Last revised: 2021-10-12 10:26

Objectives

• Define the derivative function of a given function.

• Graph a derivative function from the graph of a given function.

• State the connection between derivatives and continuity.

• Describe three conditions for when a function does not have a derivative.

• Explain the meaning of a higher-order derivative.

The derivative function

Let f(x) be a function. A second function, called the derivative of f , is defined by

f
0(x)

def
= lim

h!0

f(x+ h)� f(x)

h
.

This equation is just Equation (**) from Lesson 6 with the name of one variable changed.

+ The domain of the function f
0—that is, the set of input values x for which f

0(x) is defined—is
the set of x-values for which the above limit exists and is a real number.

Notations for the derivative:

• Here we list all the most common notations used to denote the derivative of y = f(x):

f
0(x)

dy

dx

d

dx

⇥
f(x)

⇤
Df(x) y

0

• In general, the notation ����
x=a

after an expression means “evaluate the expression by substituting x = a.” So, for instance,
the notation

dy

dx

����
x=a

means the same thing as
f
0(a).

Fail conditions for di↵erentiability:

Recall (from the previous lesson) that a function f fails to be di↵erentiable at x = a (that is,
f
0(a) does not exist) if. . .

• the graph of f contains a corner or

• the tangent line at x = a is vertical.



5. Derivative Sandbox

Applets

But several 
students 
“discovered” 
relationships 
between the 
graphs of f and 
its first two 
derivatives just 
by playing 
around with the 
applet.



5. Derivative Sandbox
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But several 
students 
“discovered” 
relationships 
between the 
graphs of f and 
its first two 
derivatives just 
by playing 
around with the 
applet.



5. Derivative Sandbox

Applets

But several 
students 
“discovered” 
relationships 
between the 
graphs of f and 
its first two 
derivatives just 
by playing 
around with the 
applet.



6. Introducing the Chain Rule

Applets

§3.4

• Motivation for Chain Rule

Objectives:

– Prior to formally presenting the Chain Rule, build intuition about the rela-

tionships between the derivatives of g(x), g(x � 1), and g(ax) (x > 1) in

general, taking g(x) = sin(x) for a concrete example.

– Prompt students to guess the derivative of g(x� 1) based on their intuitive

understanding (e.g. of tangent lines).

– Illustrate how the graph of the derivative of sin(ax) changes amplitude when

the value of a is varied.

A standalone document 
lists the learning 
objectives I had in 
mind for each applet.
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Applets
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z = g(x) = sin(x)

“What would you 
guess the derivative 
of sin(x – 1) is?”
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z = g(x) = sin(x)
z = g(x-1)

“The tangent line to 
sin(x) at x = 0 has 
the same slope as 
the tangent to the 
shifted version at 
x = 1.”
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z = g(ax), a = 1.

“What if we speed 
up sin(x)?”

The slider controls the frequency of the sinusoidal sin(ax).


As a is increased, students can see the tangent at 0 grow steeper.
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z = g(x) = sin(x)
z = g(ax), a = 1.214

“Let’s turn up the 
frequency…”

The slider controls the frequency of the sinusoidal sin(ax).


As a is increased, students can see the tangent at 0 grow steeper.
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z = g(x) = sin(x)
z = g(ax), a = 2

“…say, by doubling it, 
to get sin(2x).”
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z = g(x) = sin(x)
z = g(ax), a = 2

“What do you 
suppose the 
derivative of  
sin(2x) is?”



6. Introducing the Chain Rule

Applets

�

�

�(�) = ���(�)

�(�-�) = ���(�-�)

�(��) = ���(��)

�
��
[�(��)]

� � � � � �
�

-�

-�

�

�

�

�

�����������

z = g(x) = sin(x)
z = g(ax), a = 2

z = d
dx
[g(ax)]

“Here’s a hint: the 
tangent to sin(2x) 
at 0 is twice as 
steep as the tangent 
to sin(x) at 0.”



7. Introducing the Inverse Function Theorem with Tangent Lines
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This applet provides motivation for 
the Inverse Function Theorem by 
building the intuition that if the 
tangent line to f has slope


at (a, f(a)), then the tangent line 

to f –1 at the corresponding point 
(f(a), a) ought to have slope


      .

∆y

∆x

∆x

∆y
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The coordinates of the points 
(a, f(a)) and (f(a), a) can be 
revealed and hidden using a 
checkbox.
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The applet provides 
a just-in-time review 
of the construction 

of the graph of f –1 
given the graph of f.
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As the slider marked


“2: Draw the reflection”


is moved, the graph of f –1 
appears as if drawn by a 
pencil at the moving point 
(f(a), a).



7. Introducing the Inverse Function Theorem with Tangent Lines

Applets
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The relationship between the 
slopes of the tangent lines to 
the two graphs at coordinate-
swapped points is easy to see 
without introducing any 
unneeded and potentially 
confusing notation.



� �

�

�� ��� �� �� ���������� ��� ��������� �� ��� ����� �� �

�� ���� ��� ���������

�� ���� ������������ ��� ���������

�=
�

�

� (�)

� (�)
� �

�

���� ����������� �� �������� ����� (�(�)��) �� ����

���� ������� �����

���� ��������� ������������

� �

�

�� ��� �� �� ���������� ��� ��������� �� ��� ����� �� �

�� ���� ��� ���������

�� ���� ������������ ��� ���������

�=
�

�

� (�)

� (�)
� �

�

���� ����������� �� �������� ����� (�(�)��) �� ����

���� ������� �����

���� ��������� ������������

7. Introducing the Inverse Function Theorem with Tangent Lines

Applets

We can even see why the 
Inverse Function Theorem will 
forbid the tangent to f at a 
from having a horizontal slope.



8. Linear Approximation Dx f to a Function of One Variable

Applets
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Applets allow us 
to show 
students the 
pictures we 
instructors have 
in our heads, 
without 
bothering 
students with 
unnecessary 
technical 
details.
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Applets
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Concepts which 
are beyond the 
scope of the 
course—but 
nonetheless 
provide 
motivation for 
course material
—can be 
presented 
informally.
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Here the 
practical 
difference 
between linear 
approximations 
of the same 
function with 
different 
tangent points 
is illustrated 
without words.
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Applets
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There’s no need 
to define  
𝜀-neighborhoods 
of functions in 
order to help 
students see that 
the nearness of 
(some restriction 
of) f to its linear 
approximation 
depends on the 
tangent point.
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9. Finding Critical Numbers

Applets
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Here the 
“Big 
Picture” 
strategy 
for finding 
critical 
numbers is 
presented 
for four 
different 
examples.
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Each step 
in the 
process can 
be revealed 
and hidden 
with 
checkboxes.
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The 
examples 
chosen 
each 
require 
different 
technical 
skills.

polynomial

trigonometric

rational function

rational power
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Students 
can use 
these 
exercises 
for practice, 
supplying 
the missing 
details…
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…all the 
while 
staring at 
an outline 
of the 
solution, 
with the 
result of 
each step 
available on 
demand.
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10. Introducing the Mean Value Theorem

Applets

It’s easier to 
see that the 
slope of the 
secant line is 
attained by the 
derivative at 
some interior 
point of [a,b]…
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It’s easier to 
see that the 
slope of the 
secant line is 
attained by the 
derivative at 
some interior 
point of [a,b]…



10. Introducing the Mean Value Theorem

Applets

…then it is to say it using the vocabulary and symbols 
available to the early Calculus student.

Note that (*) can be rewritten
f(b)� f(a)

b� a
= f

0(c).

So the Theorem says that:
0

@
the average

rate of change
over [a, b]

1

A =

 
the instantaneous
rate of change

at c

!
for some c in the interval (a, b).

The slope of the line through
�
a, f(a)

�
and

�
b, f(b)

�

is
�y

�x
= the average rate of change over [a, b].

The slope of the tangent line through
�
c, f(c)

�
is f 0(c).

According to the Mean Value Theorem, these two slopes are equal
for some choice of c between a and b.

The Mean Value Theorem (and its special case, Rolle’s Theorem) just says there exists some c

between a and b.

Like some other theorems we have seen, the Mean Value Theorem does not tell you what the value
of c is. (Recall:) We call such a theorem an existence theorem.

Some other existence theorems:

• Intermediate Value Theorem

• Extreme Value Theorem

💀
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10. Introducing the Mean Value Theorem

Applets

By giving the 
student control 
over the 
picture, we 
empower them 
to formulate 
questions they 
might otherwise 
struggle to 
articulate.



11. Intervals of Increase/Decrease

Applets

Ex. 1. Find the intervals on which f(x) = 3x4 � 4x3 � 12x2 +5 is increasing, and the intervals on
which it is decreasing.

Solution.

Step 1. Find the critical numbers and mark them on the number line.

Critical numbers happen where f 0(x) = 0 or f 0(x) is undefined.

f 0(x) = 0:

f 0(x) = 12x3 � 12x2 � 24x = 12x(x2 � x� 2)

= 12x(x� 2)(x+ 1)

We see that f 0(x) = 0 when x = 0, x = 2, or x = �1.

f 0(x) is undefined:

This never happens, because f is a polynomial (and therefore its domain is all real
numbers).

Critical numbers on the number line:

-1 0 2

Step 2. Determine the sign of f 0(x) in each interval.

We’ve already factored f 0(x) = 12x(x� 2)(x+ 1).

This makes it easy to see where f 0(x) is positive or negative—we can just find where
each factor is positive and negative, and then count the negative signs.

• An odd number of negative factors (e.g. positive ⇥ negative) yields a negative number.

• An even number of negative factors (e.g. positive ⇥ positive) yields a positive number.

interval sign of f 0(x) 12x (x� 2) (x+ 1)
�1 < x < �1 � � � �
�1 < x < 0 + � � +
0 < x < 2 � + � +
2 < x < 1 + + + +

-1 0 2

- + - +

Step 3. Apply Increasing/Decreasing Test.

f is decreasing on (�1,�1) and (0, 2), increasing on (�1, 0) and (2,1).

(We could use closed or open intervals here, because f 0 exists at each critical number.)

Finding intervals of 
increase/decrease was 
another known problem 
spot for our students.
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(We could use closed or open intervals here, because f 0 exists at each critical number.)

Finding intervals of 
increase/decrease was 
another known problem 
spot for our students.
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The process of 
identifying intervals 
where sign(f ’)=const 
can be made tactile and 
visual using an applet.

Ex. 1. Find the intervals on which f(x) = 3x4 � 4x3 � 12x2 +5 is increasing, and the intervals on
which it is decreasing.

Solution.

Step 1. Find the critical numbers and mark them on the number line.

Critical numbers happen where f 0(x) = 0 or f 0(x) is undefined.

f 0(x) = 0:

f 0(x) = 12x3 � 12x2 � 24x = 12x(x2 � x� 2)

= 12x(x� 2)(x+ 1)

We see that f 0(x) = 0 when x = 0, x = 2, or x = �1.

f 0(x) is undefined:

This never happens, because f is a polynomial (and therefore its domain is all real
numbers).

Critical numbers on the number line:

-1 0 2

Step 2. Determine the sign of f 0(x) in each interval.

We’ve already factored f 0(x) = 12x(x� 2)(x+ 1).

This makes it easy to see where f 0(x) is positive or negative—we can just find where
each factor is positive and negative, and then count the negative signs.

• An odd number of negative factors (e.g. positive ⇥ negative) yields a negative number.

• An even number of negative factors (e.g. positive ⇥ positive) yields a positive number.
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Step 3. Apply Increasing/Decreasing Test.

f is decreasing on (�1,�1) and (0, 2), increasing on (�1, 0) and (2,1).

(We could use closed or open intervals here, because f 0 exists at each critical number.)

11. Intervals of Increase/Decrease

Applets

Workbook Lesson 7
§3.2, The Derivative as a Function

Last revised: 2021-10-12 10:26

Objectives

• Define the derivative function of a given function.

• Graph a derivative function from the graph of a given function.

• State the connection between derivatives and continuity.

• Describe three conditions for when a function does not have a derivative.

• Explain the meaning of a higher-order derivative.

The derivative function

Let f(x) be a function. A second function, called the derivative of f , is defined by

f
0(x)

def
= lim

h!0

f(x+ h)� f(x)

h
.

This equation is just Equation (**) from Lesson 6 with the name of one variable changed.

+ The domain of the function f
0—that is, the set of input values x for which f

0(x) is defined—is
the set of x-values for which the above limit exists and is a real number.

Notations for the derivative:

• Here we list all the most common notations used to denote the derivative of y = f(x):

f
0(x)

dy

dx

d

dx

⇥
f(x)

⇤
Df(x) y

0

• In general, the notation ����
x=a

after an expression means “evaluate the expression by substituting x = a.” So, for instance,
the notation

dy

dx

����
x=a

means the same thing as
f
0(a).

Fail conditions for di↵erentiability:

Recall (from the previous lesson) that a function f fails to be di↵erentiable at x = a (that is,
f
0(a) does not exist) if. . .

• the graph of f contains a corner or

• the tangent line at x = a is vertical.



11. Intervals of Increase/Decrease

Applets

In this applet, students are 
presented with a number line 
representing x-values (top) 
and buttons that allow them 
to add interval endpoints and 
test points.



11. Intervals of Increase/Decrease

Applets

Each added point starts out 
randomly placed.



11. Intervals of Increase/Decrease

Applets

The crosshairs can then be 
dragged to wherever the 
student thinks the added point 
should be.



11. Intervals of Increase/Decrease

Applets

When a test point is added, the 
sign of the derivative is 
represented by a blue point (–) or 
a red point (+).


These colored points are secretly 
points on the graph of the 
derivative.


I tell the students it’s like playing 
Battleship (if they know what 
that is).



11. Intervals of Increase/Decrease

Applets

The large crosshairs are 
interval endpoints.


They’re represented in the 
graph by ticks on the x-axis.



11. Intervals of Increase/Decrease

Applets

The small crosshairs are test 
points.



11. Intervals of Increase/Decrease

Applets

Once the problem is 
completed, the graphs of the 
function and its derivative can 
be compared.


In class, working with this 
applet feels like playing a game
—we know what the graph of f 
looks like from the start, but 
our goal is to convince 
someone who can’t see the 
graph where f increases and 
decreases.



11. Intervals of Increase/Decrease

Applets

At this time I have four of 
these exercises worked up as 
applets.


It’s very easy to change the 
function for new exercises.

§4.5

• Intervals of increase/decrease (four examples)

Objectives:

– Provide a “big picture” outline of the steps for determining intervals of

increase/decrease

– Provide a hands-on experience of the process of partitioning a function’s

domain by critical numbers and choosing test points in each resulting interval

– Reinforce the two-part definition of critical numbers by using functions

whose derivatives are rational functions
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w wℓ ℓ

perimeter = 8 A(w) = (4 - w)w

An 8-inch long pipe cleaner is bent into the shape of a rectangle.
What are the dimensions of the rectangle with maximum area?

12. Applied Optimization Problems (1 of 3)

Applets

Optimization 
problems in Calculus 1 
can all be solved using 
the same general 
strategy.


But students may lose 
sight of the purpose 
of each step when 
their process is not 
grounded in the facts 
of the problem.

Source for problem: Tricia Van Brunt (Wake Tech CC) 
and Julia Smith (Wake Tech CC), “Paper, pipe 
cleaners, and polynomials.” 2019 AMATYC Annual 
Conference: Milwaukee, WI.
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w wℓ ℓ

perimeter = 8 A(w) = (4 - w)w

An 8-inch long pipe cleaner is bent into the shape of a rectangle.
What are the dimensions of the rectangle with maximum area?

12. Applied Optimization Problems (1 of 3)

Applets

In a sequence of three 
applets, I introduce a 
general strategy to the 
students.


First comes 
understanding the 
problem.


In this example, the 
next step is identifying 
the quantity to be 
optimized.
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w wℓ ℓ

perimeter = 8 A(w) = (4 - w)w

An 8-inch long pipe cleaner is bent into the shape of a rectangle.
What are the dimensions of the rectangle with maximum area?

1 2 3 4
w

1

2

3

4

A(w) = (4-w)w

Manipulating the slider simulates 
bending the pipe cleaner into 
rectangles of different shapes.


The rectangle and graph update with 
the slider, which controls w.

12. Applied Optimization Problems (1 of 3)

Applets



Applets

12. Applied Optimization Problems (2 of 3)

θ

���� ��� �����

������ ������
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������ �������� ��� �

������ �������� ��� � = �(�)

������ ����� �� �(�)
(x,y)

�-�

r

The general 
strategy 
given in the 
Workbook 
for these 
problems 
includes 
writing a 
legend.
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12. Applied Optimization Problems (2 of 3)

θ
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������� ���������

This applet 
can be used 
for group 
work.


Once the 
“legend” is 
revealed, all 
students can 
develop their 
own solutions 
with the same 
notation.



Applets

12. Applied Optimization Problems (2 of 3)

θ
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� = ���

As with other 
types of 
multipart 
problems, the 
applet hides 
the technical 
details and 
emphasizes 
the “Big 
Picture” 
strategy.
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12. Applied Optimization Problems (2 of 3)
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The applets 
enable 
kinesthetic 
learners to 
ground their 
intuition in 
physical 
interaction 
with a live 
working 
model.
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12. Applied Optimization Problems (2 of 3)

θ
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Even if a 
student gets 
stuck on a 
step along 
the way, 
they can 
still use the 
graph (next 
two slides) 
to find an 
approximate 
solution.
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12. Applied Optimization Problems (2 of 3)
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12. Applied Optimization Problems (2 of 3)
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12. Applied Optimization Problems (3 of 3)

Applets

“The 
vertical 
distance 
between 
two 
graphs” is 
concretely 
identifiable 
in the 
picture.
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12. Applied Optimization Problems (3 of 3)

Applets

The fact 
that this 
vertical 
distance is 
a function 
of x is 
easy to see 
when we 
use  the 
slider to 
move x.
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12. Applied Optimization Problems (3 of 3)

Applets



Curriculum coverage

Applets

About half of the Workbook Lessons, each of which covers one textbook 
section, currently have applets associated with them, some of which 
were written by other authors.


The other authors’ Mathematica applets can be downloaded at the 
Wolfram Demonstration Project website.


Applets uploaded to Wolfram tend not to be taken down once posted


Beware of linking to web resources that may not be available in the 
future.


Dead links in lesson plans are a compelling reason to advocate for 
accessible institutional repositories for open source teaching materials



Applets

§2.3

• Squeeze Theorem (Author : Bruce Atwood, Beloit College, Remix : Julie C. La Corte)

• Limit of sin(x)/x

Objectives:

– Illustrate the geometric proof that sin(x)/x ! 1 as x ! 0

Remixes of other authors’ applets



Applets

§2.4

• Formal meaning of discontinuity (Author : Izidor Hafner, Remix : Julie C. La Corte)

Objectives:

– Provide a hands-on experience of the challenge, “Can you find for any given

" > 0 a ‘spoiler’ x within � of a such that f(x) is not within " of f(a)?”

– Demonstrate that “a jump discontinuity at a is not removable,” in the sense

that there is no way to obtain a continuous function by varying the value of

f(a)

Remixes of other authors’ applets



Applets

• Pendulum

Objectives:

– Identify the points on the graph of a sinusoidal at which velocity and accel-

eration attain their extrema

– Provide an animated visualization that reinforces the relationships between

position, velocity, and acceleration of a particle undergoing simple harmonic

motion

§3.1

• Di↵erentiation microscope (Authors: Wolfgang Narrath and Reinhard Simonovits)

Objectives:

– Identify points at which the derivative does not exist because the graph has

a cusp

– Provide a hands-on experience of the fact that di↵erentiability at a implies

that a function is approximately linear in a su�ciently small neighborhood

of a

Remixes of other authors’ applets



Remixes of other authors’ applets

Applets

§4.4

• Rolle’s Theorem (Author : Laura R. Lynch, Remix : Julie C. La Corte)

Objectives:

– Provide a visualization of the meaning of Rolle’s Theorem

– Provide a kinesthetic experience of finding a point at which the derivative

is 0 between a and b (a < b)



Applets

§3.1

• Di↵erentiation microscope (Authors: Wolfgang Narrath and Reinhard Simonovits)

Objectives:

– Identify points at which the derivative does not exist because the graph has

a cusp

– Provide a hands-on experience of the fact that di↵erentiability at a implies

that a function is approximately linear in a su�ciently small neighborhood

of a

Other authors’ applets



§3.1

• Di↵erentiation microscope (Authors: Wolfgang Narrath and Reinhard Simonovits)

Objectives:

– Identify points at which the derivative does not exist because the graph has

a cusp

– Provide a hands-on experience of the fact that di↵erentiability at a implies

that a function is approximately linear in a su�ciently small neighborhood

of a

Applets

• When is a piecewise function di↵erentiable? (Author : Izidor Hafner)

Objectives:

– Understand that di↵erentiability at a point implies that the lefthand and

righthand derivatives are equal

– Solve problems that ask the student to extend a function defined for (�1, a)

to a di↵erentiable function with domain R

Other authors’ applets



Applets

• Wheels and belts (Author : Marc Renault, Shippensburg Unversity)

Objectives:

– Visualize, in terms of spinning wheels linked by belts, the e↵ect of altering

du/dx and dy/du on dy/dx, where y(u) and u(x) are linear

– Provide a hands-on experience of the Chain Rule in which the velocities

du/dx and dy/du can be manipulated with sliders, and the e↵ect on dy/dx

immediately observed

– Understand the e↵ect on dy/dx when the sign(s) of y(u) and/or u(x) are

inverted (by twisting the belts joining the spinning wheels)

– Build an intuitive understanding of function composition

§3.4

• Motivation for Chain Rule

Objectives:

– Prior to formally presenting the Chain Rule, build intuition about the rela-

tionships between the derivatives of g(x), g(x � 1), and g(ax) (x > 1) in

general, taking g(x) = sin(x) for a concrete example.

– Prompt students to guess the derivative of g(x� 1) based on their intuitive

understanding (e.g. of tangent lines).

– Illustrate how the graph of the derivative of sin(ax) changes amplitude when

the value of a is varied.

Other authors’ applets



Applets

§3.4

• Motivation for Chain Rule

Objectives:

– Prior to formally presenting the Chain Rule, build intuition about the rela-

tionships between the derivatives of g(x), g(x � 1), and g(ax) (x > 1) in

general, taking g(x) = sin(x) for a concrete example.

– Prompt students to guess the derivative of g(x� 1) based on their intuitive

understanding (e.g. of tangent lines).

– Illustrate how the graph of the derivative of sin(ax) changes amplitude when

the value of a is varied.

• A snowball’s rate of change (Authors: Cindy Piao and Karen Ye, Torrey Pines High

School)

Objectives:

– Distinguish derivatives with di↵erent dependent and independent variables

using an animated point appearing simultaneously on the graphs of surface

area and diameter vs. time and surface area vs. diameter

Other authors’ applets



Applets

§3.4

• Motivation for Chain Rule

Objectives:

– Prior to formally presenting the Chain Rule, build intuition about the rela-

tionships between the derivatives of g(x), g(x � 1), and g(ax) (x > 1) in

general, taking g(x) = sin(x) for a concrete example.

– Prompt students to guess the derivative of g(x� 1) based on their intuitive

understanding (e.g. of tangent lines).

– Illustrate how the graph of the derivative of sin(ax) changes amplitude when

the value of a is varied.

• A snowball’s rate of change (Authors: Cindy Piao and Karen Ye, Torrey Pines High

School)

Objectives:

– Distinguish derivatives with di↵erent dependent and independent variables

using an animated point appearing simultaneously on the graphs of surface

area and diameter vs. time and surface area vs. diameter

Other authors’ applets



Applets

§5.2

• Mean Value Theorem for Integrals (Author : Chris Boucher)

Objectives:

– Provide a hands-on experience of the MVT for Integrals

Other authors’ applets



Wolfram Demonstrations Project

Distribution

Pros:

Share with other educators and users of Mathematica


Provides “permanent” links to your uploaded submissions


Cons:

Privately curated archive, may reject submissions


Educator has limited control over how content is presented 
on Wolfram’s website


Won’t host non-Mathematica materials



OpenALG/Manifold

Distribution

Pros:

Share across USG and beyond


USG and educator have control over how content is 
presented


Can host a variety of file types bundled as a single project


Caveat:

Not a replacement for a course management system like 
Brightspace/iCollege


