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Markov-Dubins problems

Markov- o 5 . o o
ownsina Il Markov-Dubins problem with free terminal direction
NPC cube

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Motivation

m (Markov, 1889): Formulated the problem with X = R in a
little-known paper



Markov-Dubins problems

Markov- o 5 . o o
ownsina Il Markov-Dubins problem with free terminal direction
NPC cube

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Motivation

m (Markov, 1889): Formulated the problem with X = R in a
little-known paper

m Practical application: How can an existing length of railroad track be

joined to a given destination, using as little new track as possible?
.

v
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u

m Initial heading and position fixed; direction at the destination is not
specified

m Minimal turning radius was needed to prevent derailment

m Problem seems to have been largely forgotten until the 1950s



Markov-Dubins problems

Markov-

Dubins in a Markov-Dubins problem with free terminal direction
NPC cube

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Motivation

m (Dubins, 1957): Solves the problem with prescribed initial and
terminal direction, X = R2

m Finds that a shortest piecewise twice-differentiable solution always
exists

m Length-minimizer is made up of at most three subarcs, each an arc
of a circle of radius R or a line segment




Markov-Dubins problems

Markov- o 5 . o o
ownsina Il Markov-Dubins problem with free terminal direction
NPC cube

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Motivation

m (1960s—2000s): Other variations studied in robotics, game theory,
differential geometry, avionics

B Variations all take X to be a Riemannian manifold, usually of
dimension 2 or 3

m For us, X will be a nonpositively curved cube complex
B More practical than it may appear. ..



Markov-Dubins problems

Markov- g g 0 g g
ownsina Il Markov-Dubins problem with free terminal direction
NPC cube
complex

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Ju nela

Motivation

m For us, X will be a nonpositively curved cube complex

B (Ghrist, 2002): Applied comparison geometry to reconfiguration
problems for metamorphic robots (aggregates capable of changing
shape through the independent motion of their constituent cells)

Two metamorphic systems composed of hexagonal cells.
A cell on the boundary of the aggregate may pivot if unobstructed (LEFT).

Figures from Ghrist and Peterson, “The geometry and topology of reconfiguration” (2007)



Markov-Dubins problems

Markov- g g 0 g g
ownsina Il Markov-Dubins problem with free terminal direction
NPC cube
complex

Find the shortest path between two points u, v in a
Bl space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Motivation

m For us, X will be a nonpositively curved cube complex
B (Ghrist and Peterson, 2007): Uses theoretical framework of 2002
paper to describe a wide range of dynamical systems
B Articulated robotic limb

The robotic arm of Ghrist and Peterson.

Figure from Ghrist and Peterson, “The geometry and topology of reconfiguration” (2007)



Markov-Dubins problems

Markov- g g 0 g g
ownsina Il Markov-Dubins problem with free terminal direction
NPC cube
complex

Find the shortest path between two points u, v in a
Bl space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Motivation

m For us, X will be a nonpositively curved cube complex

B (Ghrist and Peterson, 2007): Uses theoretical framework of 2002
paper to describe a wide range of dynamical systems

B Articulated robotic limb
B Protein folding

Model of a protein chain as a piecewise-linear chain in a cubical lattice.

Figure from Ghrist and Peterson, “The geometry and topology of reconfiguration” (2007)



Markov-Dubins problems

Markov- g g 0 g g
ownsina Il Markov-Dubins problem with free terminal direction
NPC cube
complex

Find the shortest path between two points u, v in a
Bl space X, given a prescribed initial direction U and
prescribed minimal turning radius R > 0.

Motivation

m For us, X will be a nonpositively curved cube complex

B (Ghrist and Peterson, 2007): Uses theoretical framework of 2002
paper to describe a wide range of dynamical systems

B Articulated robotic limb
B Protein folding
B Industrial track robots

Robots moving along tracks in a factory floor.




Example of a reconfigurable system

Markov-

Dubins in a Reconfiguration problem
NPC cube
complex

Move the robots from their given current positions to
el prescribed new positions in as short a time as possible
while avoiding collisions.

Reconfigurable
systems

B The classical approach in computer science to the reconfiguration
problem is to reformulate it as a problem of graph theory

m This graph-theoretical problem is the starting point for the
construction of the cube complexes we will work with



Graph-theoretic formulation of the

reconfiguration problem

Rchowml Graph-theoretic formulation of the reconfiguration
NP chbe problem
Discretize the two tracks, subdividing each into finitely

many edges. The result is the workspace graph V.




Vertices of the transition graph

Rickodll Graph-theoretic formulation of the reconfiguration
NPC cube problem
Discretize the two tracks, subdividing each into finitely

many edges. The result is the workspace graph V.

Julie (

Construct the transition graph 7.

m Records allowable configurations/states and allowable
transitions between states



Vertices of the transition graph

Markov-

oarkov- Graph-theoretic formulation of the reconfiguration
NPC cube problem

complex
i Discretize the two tracks, subdividing each into finitely
many edges. The result is the workspace graph V.

Construct the transition graph 7.

m The vertices of 7 are states of the system, represented
as labelings of Vert(W).

m In our example, each vertex of T is a function
u:{1,2,3,4,5,6,7} — {o,e, e}

N

A vertex of T




Generators of a reconfigurable system

Markov-
Dubins in a | EdgeS Of T
NPC cube
complex

m A set G of pairs of inverse elementary moves is
specified.

Such a pair is called a generator.

Reconfigurable

A m In our example, each elementary move slides one
robot on its track to an unoccupied adjacent vertex.

A generator ¢ is defined by the following pair of
moves:

If vertex 1 is occupied by ® and vertex 2 is unoccupied,
move @ to vertex 2.
If vertex 2 is occupied by ® and vertex 1 is unoccupied,
move @ to vertex 1.



Edges of the transition graph

i m Edges of T
NPC cube

complex m Each generator ¢ is represented as a pair of
labelings of a subset S of Vert(W). To apply ¢y to a
state u means to redefine u on S, obtaining a new
labeling

plu] : {1,2,3,4,5,6,7} — {0, e, e}.
m Two states u, v € Vert(7) are joined by an edge in

T if some generator ¢ € G toggles the system
between states u and v.

6 6
14
1 3\4 5 1 3\4 5
@
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m A collection of states that is closed under the
application of all generators is an (abstract)
reconfigurable system.



Transition graph

i The transition graph 7 is analogous to the Cayley graph of a

Dubins in a

NP chbe group, but need not be homogeneous: some generators
may not be applicable to some states.




Graph-theoretic formulation of the

reconfiguration problem

pMarkov- Graph-theoretic formulation of the reconfiguration problem

MASEIE Discretize the two tracks, subdividing each into finitely many
edges. The result is the workspace graph W.

Construct the transition graph 7.

heconforale Find the shortest path from an initial state u € Vert(7) to the
e goal state v € Vert(T).

Such a path corresponds to a sequence of elementary moves that
reconfigures the system from state u to state v.




Graph-theoretic formulation of the

reconfiguration problem

pMarkov- Graph-theoretic formulation of the reconfiguration problem

MASEIE Discretize the two tracks, subdividing each into finitely many
edges. The result is the workspace graph W.

Construct the transition graph 7.

heconforale Find the shortest path from an initial state u € Vert(7) to the

e goal state v € Vert(7).

Such a path corresponds to a sequence of elementary moves that
reconfigures the system from state u to state v.

Drawback of graph-theoretical formulation
m A shortest path in 7 need not be an efficient reconfiguration
strategy
m Transition graph does not encode information about which
moves can be applied concurrently



Geometric formulation of the reconfiguration

Markov-

6 6
Dubins in a | 4 s 1 g3\ s
NPC cube 7/

.

| 4 5 1 4 5
¢ ' ’
Use cubes to encode concurrency

m We say that k generators commute at a state v if they can
be applied to u simultaneously, and if the resulting
configuration is independent of the order in which they are
applied.

Reconfigurable
systems

m Wherever the 1-skeleton Q") of a k-cube appears in 7,
attach a k-cube if for each vertex u of Q(), the generators
corresponding to the edges incident with t commute at v.



Geometric formulation of the reconfiguration

problem

Markov-

6 6
Dubins in a | 4 s 1 g3\ s
NPC cube 7/

complex

| .4 5 1 ‘4 5
By attaching cubes to the transition graph as described, the

configuration space of a reconfigurable system is realized
as a cube complex called the state complex.



The state complex of a reconfigurable system

Markov-

Dubins in a
NPC cube
complex —
| Xl
[]

State complex for a metamorphic robotic system
composed of pivoting hexagonal tiles (Ghrist-Peterson, 2007)

Reconfigurable
systems

m Interior points of a cube are intermediate stages of a
transition between states.

m A path along a k-cube’s diagonal represents the
simultaneous application of the kK commuting generators
corresponding to the k parallelism classes of the cube’s
edges.

m A path from u to v in the state complex determines a
strategy for reconfiguring the system from state u to state v.



The state complex of a reconfigurable system

Markov-
Dubins in a
NPC cube
complex —

State complex for a metamorphic robotic system

composed of pivoting hexagonal tiles (Ghrist-Peterson, 2007)

(Ghrist, 2002): The state complex of a reconfigurable system is a
nonpositively curved cube complex.

When v and v are fixed, efficient algorithms exist for finding the
shortest path between them.
m (Ardila-Owen-Sullivant, 2011): General nonpositively curved
cube complex
m (Chepoi-Maftuleac, 2012): Nonpositively curved rectangular
complexes



Fault tolerance

Markov- . . . . . .
Dubins in a But in a real world environment, changing circumstances in the physical

ch?n ;luefie workspace may intervene to make a reconfiguration strategy that is
already in progress impossible to complete.

m Suppose a goal state has been prescribed, but an obstruction
prevents us from attaining it. A new goal state in the state complex
may then be prescribed.

Fault tolerance

m ltis inefficient to bring the system to a halt whenever a new strategy
is prescribed, and impractical to instantaneously follow the new
strategy without stopping.

m We therefore seek a solution to the problem of finding a shortest
path in the state complex with a given initial direction.

m In order to limit the stress placed on the system’s physical
components, we impose a bound on the path’s curvature.

Before we give a formal statement of our central problem, we will briefly
review the definition of a nonpositively curved geodesic space. . .



Nonpositive curvature

Comparison triangles

Markov-
Dubins in a
NPC cube

complex

7 )
x z ¥ b4

Fault tolerance

(LEFT:) A geodesic triangle Axyz in a square complex, and (RIGHT:) a comparison triangle in R? for Axyz

A metric space (X, d) is a geodesic space if every x, y € X can be
joined by a path in X of length ¢ = d(x, y), called a geodesic.

m A geodesic from x to y will be denoted by [xy].

Let x, y, z be three distinct points in a geodesic space. Then
Axyz = [xy] v [yz] v [zX]

is a geodesic triangle, and a comparison triangle Ax’y’Z’ for Axyz is
a triangle in the Euclidean plane with corresponding sides equal in
length.



Nonpositive curvature

Thin triangles

Markov- A geodesic triangle Axyz is thin if the distance between any two points

FAGaall  on Axyz is no larger than the distance between the corresponding points
complex on a comparison triangle:
M corte d(p.q) < d(p',q).
y/

y

Fault tolerance ,
q
q
p z X P 4

A geodesic space X is

m nonpositively curved (NPC) at a point w if all geodesic triangles
sufficiently near w are thin,

m nonpositively curved if X is nonpositively curved at every point,
m CAT(0) if X is simply connected and nonpositively curved.



Nonpositive curvature

Nonpositively curved square complexes

i The square complex obtained by arranging d copies of the

Dubins in a

NP cue unit square [0, 1] x [0, 1] cyclically around a central vertex is
nonpositively curved if d > 4.

Julie
IF

Fault tolerance

A positively curved (top row) and
some nonpositively curved (bottom row)
piecewise Euclidean square complexes

Boundaries of metric balls (dashed) about center vertex
are unions of arcs of Euclidean circles




Central problem: Markov-Dubins problem with
free terminal direction in a NPC cube complex

Markov- - 5 - - o
Dubins n a Markov-Dubins problem with free terminal direction
NPC cube
complex

i Let k > 0. Given initial and terminal positions u and v in a
RSl nonpositively curved cube complex X, find the shortest
unit-speed path v in X from u to v such that

m v has prescribed initial direction U € link(u),
m || <k a.e. in local coordinates, and
m ~ is smooth (has turning angle 0) at breakpoints.



Sufficient collection of paths

Markov- Existence theorem
Dubins in a L.
NPC cube m Preliminary:
complex Define a collection C of “admissible” unit-speed paths ~ so
that admissible paths satisfy the boundary conditions (u, U, v)

and the curvature constraint with £ > 0.
m Then show that C # @ = C contains a shortest path.

m How should we define “admissible”?

Admissible paths



Sufficient collection of paths

Markov- Existence theorem
Dubins in a L.
NPC cube m Preliminary:

complex Define a collection C of “admissible” unit-speed paths ~ so
that admissible paths satisfy the boundary conditions (u, U, v)
and the curvature constraint with £ > 0.

m Then show that C # @ = C contains a shortest path.

m How should we define “admissible”?
®m Minimally, want C" in local coordinates

Admissible paths

m Twice-differentiable in local coordinates, with curvature
'] < w7



Sufficient collection of paths

Markov- Existence theorem
Dubins in a L.
NPC cube m Preliminary:

complex Define a collection C of “admissible” unit-speed paths ~ so
that admissible paths satisfy the boundary conditions (u, U, v)
and the curvature constraint with £ > 0.

m Then show that C # @ = C contains a shortest path.

m How should we define “admissible”?
®m Minimally, want C" in local coordinates

Admissible paths

m Twice-differentiable in local coordinates, with curvature
W'l < ? X

m (Dubins, 1957): For certain choices of x > 0, U e S', and
u, v € R?, the collection D of twice-differentiable unit-speed
paths v : [a, by] — R? with

’Y(a) = U, 7l(a) = U> V(b’Y) = V7 |7
does not contain an element of minimum length. ..

//|



Sufficient collection of paths

Markov-

Do m (Dubins, 1957): For certain choices of x > 0, U e S, and
NPC clube u, v e R?, the collection D of twice-differentiable unit-speed
compiex paths v : [a, b,] — R? with

@) =u, H(@=U ~b)=v, |¥|<
does not contain an element of minimum length.

But for any choice of x > 0, u, U, and v, there exists a C' and
piecewise twice-differentiable path g with length
£(B) inIf)K(c).

ce

Admissible paths

Example: U B

Pick
k=1, U:(an)u U:(071)7 V:(371)7

and let 38 be the shortest CL path in R? satisfying these boundary conditions and
curvature bound.

m A CL path is the C' concatenation of a circular arc and a line segment.



Sufficient collection of paths

Markov-

Do m (Dubins, 1957): For certain choices of x > 0, U e S, and
NPC clube u, v e R?, the collection D of twice-differentiable unit-speed
compiex paths v : [a, b,] — R? with

@) =u, Y@=U ~by)=v, W[<k
does not contain an element of minimum length.

But for any choice of x > 0, u, U, and v, there exists a C' and
piecewise twice-differentiable path g with length

«p) = inf £(c).

Admissible paths

Example: U B

Then
m Every v € D has £(vy) > £(5).
m For any € > 0, there exists v € D with £(8) < £(y) < £(B) + ¢.




Sufficient collection of paths

Markov- . « . . »
Dubins in a How should we define “admissible”?
NPC cube

complex

m C' in local coordinates, with x-Lipschitz derivative
m Rules out abrupt changes in direction which would put
stress on moving parts of the system
m Permits CL paths

_ m Can use Dubins’ characterization of optimal paths to
e describe optimal paths contained in a cell

We now define piecewise-Lipschitz differentiability for curves in a
cube complex.



Piecewise Lipschitz-differentiable curves in a

cube complex

Markov- Let v : [a, b] — X be a path in a cube complex X, and let
Dubins in a
NPC cube a=t<b<---<thn=>b

complex
be a partition of [a, b]. A sequence (Qx)f—,' of cells in X is a cube path
for ~ with breakpoints (t);_, if

v([t, tk1]) < Qx, Qk ¢ Qxs1, Qk P Qky1.

A cube path for a curve v : [a,0) — X is defined similarly, taking m = oo.

We call each
Admissible paths Tk 1= 'Y|[

a segment of .

tstk 1]

m Note ’y(tk) € Qk,1 [ Qk

m edgewise cube path: 0
each Qx n Qx4+ is an edge i

m locally monotone square path:
Qk—1 N Qk # Qx 0 Qi1
for each suitable k, and 0, (&)
dim Q = 2 for all k A square path which is not locally monotone



Piecewise Lipschitz-differentiable curves in a

cube complex

Markov- A path in RN is k-C1-1 (or k-Lipschitz differentiable) if its

Dubins in a

NPC cube derivative exists and is k-Lipschitz.

complex

Bl et X be a cube complex, let k > 0,and let M e N (M > 2).
A path

v:la bl - X
is k-C:1(M) (or k-Lipschitz differentiable with at most M
breakpoints) if there exists a cube path Q)7 for v with
breakpoints

a=th<b<--<th=b (M<M)
such that each segment
Vi [t te1] — Q
is x-C"1 in coordinates.



Length-minimal element of C(x, M, u, v, U)

Mtk Let X be a nonpositively curved locally finite cube complex. Fix
upins in a
NPC cube m u,vin X suchthat u # v,

complex

Julie Garmela m a unit tangent vector U to p(C,) at p,(u) for some A,
La Corte

m x> 0,and

m MeN(nz=2).

Let
C(rk,M,u,v,U)
Adrieslo pahe be the set of x-C''(M) unit-speed paths v : [a, b,] — X with

Wa)=u, ~(b)=v. ¥(a)=U.

Theorem

IfC =C(k,M,u,v,U) is nonempty, then C contains a path (
of minimal length among all paths in C.



Smoothness at breakpoints

N The proof of the theorem uses only advanced calculus and Arzela-Ascoli. We
arkov- . . L
Dubins in a begin with a sequence of admissible paths v, € C such that

NPC cube .
complex £(yn) \ inf £(c),
ceC

and repeatedly pass to subsequences so that
m there is a single cube path (Qx)2_, with breakpoints ()2, for all v, and
m for each k, each of (7”|[tk,tk+1])r910=1’ (7;7|[tkatk+1]);0:1 converge.

We then show that the uniform limit v of the v is in C.

Smoothness at

breakpoints



Smoothness at breakpoints

N The proof of the theorem uses only advanced calculus and Arzela-Ascoli. We
arkov- . . .
Dubins in a begin with a sequence of admissible paths v, € C such that
NPC cube ) N, inf £(c)
complex (vn ceC (),
L and repeatedly pass to subsequences so that
m there is a single cube path (Qx)2_, with breakpoints ()2, for all v, and
o0 o0
m for each k, each of (’Y"|[tk,tk+1])n=1’ (7;,|[tk,tk+1])n:1 converge.
We then show that the uniform limit v of the v is in C.

More is needed to prove the existence of a solution to the Markov-Dubins problem:
we want our paths to have zero turning angle

Smoothness at

reakpoints - + L .77 + =
breakpoint; T—Z(v, v ) € 0,7, Tk = '7|(rk—s,tk]’ Tk T ’Y}[tka’k‘*"‘:)’

for each interior breakpoint .

Y(t)



Smoothness at breakpoints

N The proof of the theorem uses only advanced calculus and Arzela-Ascoli. We
arkov- . . .
Dubins in a begin with a sequence of admissible paths v, € C such that

NPC cube .
complex £(vn) \u L!QE £(c),

Julie

and repeatedly pass to subsequences so that
m there is a single cube path (Qx)2_, with breakpoints ()2, for all v, and
o] o]
m for each k, each of (’Y"|[tk,tk+1])n=1’ (7;,|[tk,tk+1])n:1 converge.
We then show that the uniform limit v of the v is in C.

More is needed to prove the existence of a solution to the Markov-Dubins problem:
we want our paths to have zero turning angle

Smoothness at

breakpoints T — 4(7;7 fy;r) € [O,ﬂ'],

- _ +._
Ve T V'(tk_g’tk]’ Tk T ’Y}[fk,fﬂ-e)’

for each interior breakpoint .

m The property of having zero turning angle at breakpoints is preserved when
passing to the limit.
m We carry out the same argument as for the previous theorem, but this time,

we’ll require that admissible paths have zero turning angle at interior
breakpoints.



Existence result for Markov-Dubins problem
with free terminal direction

Markov-
Dubins in a
NPC cube

complex

Julie
L

Fy

Some technical issues and their solutions:

nlmo 2(v7) #0 Construct geodesics with same directions

nliﬁmao (k) 20 as subarcs (above fig.) and use u.s.c. of £
S, nimwf(fyf #---#77) =0 | Reparametrize and delete
breakpoints (Q)k_, from cube path

Ii_r}nOO 2(v7) #0 Total curvature is lower semicontinuous,

imoo Z(’yﬁ+1) =0 STk A+ Tra2 = limp 7, ters] = T s

JNim £(vy0) # 0 =7k + £k, Vhr2) + Tkt - LGk Ykr2) = 0.

im £(v7 *---*~/;) = 0 | Reparametrize and delete

(@), from cube path

Here v = ’yn‘[tkafk+1]'



Existence result for Markov-Dubins problem

with free terminal direction

Markov- We say a x-C"" (M) path ~ is smooth at breakpoints if there exists a
g cube path (Q)J'=, (m < M) for v with breakpoints (t)f_, such that y

complex has zero turning angle at v(f) for 1 < k < m.

Ju rmela

For x, M, u, v, U as above, write
Co = Co(K,, M, u,v, U)
= {y e C(k,M,u,v,U) : ~is smooth at breakpoints}.

Theorem
Smoothness at

breakpoints IfCo is nonempty, then Coy contains a path 8 of minimal length among all
paths in C.




Numerical solution of the Markov-Dubins
problem with free terminal vector

Markov-
Dubins in a
NPC cube

complex

o - 0

We will now outline an algorithm for numerically finding the shortest CL
Jy— path between two points with prescribed initial direction in a NPC square

and numerical complex.
experiments

m Markov found that the solution to the Markov-Dubins problem with
free terminal direction in R? always exists and is a CL path.

m In a NPC square complex, an optimal CL path with prescribed
boundary conditions u, U, v and curvature bound « > 0 need not
exist, but if it does, our algorithm will find it.



Numerical solution of the Markov-Dubins
problem with free terminal vector

Markov-
Dubins in a
NPC cube

complex

o - 0

The particular square complex we’ll use to visualize the algorithm arises

Aldori from the reconfigurable system defined as follows.
gorithms

d ical : o .
expetimonts. m Five distinctly labeled checkers are placed at the vertices of a
pentagon.

m The generators are transpositions of the checkers on an edge.



Numerical solution of the Markov-Dubins
problem with free terminal vector

Markov-
Dubins in a
NPC cube

complex

o - 0

The particular square complex we’ll use to visualize the algorithm arises

Aldori from the reconfigurable system defined as follows.
gorithms

RIS m Five distinctly labeled checkers are placed at the vertices of a
pentagon.

m The generators are transpositions of the checkers on an edge.

m Generators commute iff the corresponding edges are disjoint, and
no set of 3 edges is disjoint.



Numerical solution of the Markov-Dubins
problem with free terminal vector

Markov-
Dubins in a
NPC cube

complex

m Thus each vertex in the state complex is incident with exactly five
Algorithms squares arranged cyclically.

and numerical
experiments m The transition graph is the Cayley graph of the right-angled Coxeter
system

S={s,tuv,w}

W=(S|? =12 =17=v2=w?=(st)2 = () = (w)® = (w)? = (ws)? = 1).



Numerical solution of the Markov-Dubins

problem with free terminal vector

Markov-

Dubins in a . .
NPC cube m The state complex is a closed orientable surface of genus 16,

whose universal cover is the Davis complex of (W, S).
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m The universal cover of the state complex is a space we call the
5-plane X5s.



Definition of the d-plane Xy

Markov-
Dubins in a

NPC cube e S
; 4
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Julie Carmela oy
ort St gy | o
e IStV = WAt
. . Wit
e
= wst
e
we
w t & W
w
N
o Y
. et
s a—
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and numerical e I s
v St vst

experiments

Definition. The d-plane X, (d > 4) is a simply connected surface
without boundary that is a piecewise Euclidean square complex with a
d-regular graph as its 1-skeleton.

m 2= X,



Fault handling is a Markov-Dubins problem

Markov- For an illustration of the problem, suppose the system begins in a given

Dubins in a
NPC cube state, —_—
complex
t U .
Juli mela S [}
vV & .
4 4
U | pe
L]
X Vv s ¥ W
W w W o+ 0
v §
and a goal state is given. ..
Goal state
Algorithms (Swap B and C)
and numerical P ”
experiments e )
» s.
U 4 pe 5
t
X Vv 5 ¥ W
w W 6—+—0
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Algorithms
and numerical
experiments

Fault handling is a Markov-Dubins problem

...but a new goal state is prescribed before the original goal state has been
attained.

Revised goal state
(Swap A and E)

i t U F
s AN
4 LN
q/d/ﬁ\ﬂ\ N re .
| 4
1
\ / X § ¥ W
Vv
¥ ¥ P : !
/ w W V)
i 2 A w

At the instant when the new goal state is prescribed, we have a Markov-Dubins
problem with prescribed initial position, initial direction, and terminal position.

To find CL paths in a NPC square complex, we will need an algorithm for finding
geodesic paths.



Chepoi-Maftuleac unfolding

Markov- Chepoi and Maftuleac’s algorithm for finding geodesics depends on the following
Dubins in a result.
NPC cube

complex

Theorem (Chepoi-Maftuleac, 2012)

Julie Carr

The geodesic between two points u, v of a CAT(0) square complex X lies in a
La g o g ;

subcomplex K of X which is isometric to a monotone planar polygon. Moreover,
K depends only on the choice of 2-cells containing u and v.

m This result reduces the problem of finding shortest paths in X to that of
finding shortest paths in planar polygons: no shortcut from u to v is possible

by leaving K.
WIS,
W‘f:“a;: s WU -
Wiy, P Lt
Algorithms M OX A R
and numerical 4 oA ——
experiments X

vt 3 ¥ vt

ot

gy e

Here, a polygon P is monotone if every axis-aligned line segment with endpoints in P is contained in P.



Lee-Preparata funnel algorithm

Markov-
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Algorithms Many algorithms for finding shortest paths in a monotone polygon exist.

ZE| UMETEE] We use the classic “funnel algorithm” of Lee and Preparata.
experiments

m A monotone polygon P can be triangulated by edges E; with endpoints on
the boundary of P

m The dual graph of the triangulation is a path

m The path determines an ordering of edges E; that starts with the base of a
triangle containing the initial point u (green dot) and ends with the base of a
triangle containing the terminal point v (red dot)



Lee-Preparata funnel algorithm

Markov-
Dubins in a
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complex

Algorith
an%°;'ﬂ,;“§,ical The algorithm begins with a “funnel” F with legs [uL] and [uR] (blue), whose
experiments apex is the initial point u, where [LR] is an edge of a triangle containing u

The funnel F consists of the cone of lines of sight between [uL] and [uR]
from u to the boundary of P

If the terminal point v lies in the funnel F, we are done: [uv] lies in P

If not, we look at the next edge E’. If the resulting funnel is contained in the
current funnel F, we accept E’ as the base of the funnel F’ for the next step



Lee-Preparata funnel algorithm
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Algorithms . . .
and numerical m If the next edge E’ determines a funnel not contained in the current funnel,

experiments we reject it, set F = F, and move to the next edge
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Algorithms . . .
and numerical m If the next edge E’ determines a funnel not contained in the current funnel,

experiments we reject it, set F = F, and move to the next edge
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Algorithms . . .
and numerical m If the next edge E’ determines a funnel not contained in the current funnel,

experiments we reject it, set F = F, and move to the next edge



Lee-Preparata funnel algorithm
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Julie

Algorith )
an%°;'u,;“eiica| m If a leg of the funnel determined by the next edge crosses over or meets the

experiments opposite leg of the current funnel F, we have found a segment of the
desired shortest path [uv]



Lee-Preparata funnel algorithm

Markov-
Dubins in a
NPC cube

complex

Algorith _—
an%"L'U,L“;icm We then reset u (green dot), choose a new initial edge E (brown) of the

experiments triangulation, and repeat the process, halting if v lies in the current funnel or
if we have reached the final interior edge of the triangulation
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experiments the base of the funnel F’ for the next step
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and numerical m [f the resulting funnel is contained in the current funnel F, we accept E’ as

experiments the base of the funnel F’ for the next step
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Algorithms . . . .
and numerical m [f the resulting funnel is contained in the current funnel F, we accept E’ as

experiments the base of the funnel F’ for the next step
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Algorith T ) .
an%°;'u,;“eiica| m Halt: we have reached the final interior edge of the triangulation

experiments m The final segment begins with the current apex if v lies in the current funnel
F, and begins with L or R (whichever is closer to v) if outside F
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Determination of CL paths with the bisection

method

Markov- 1=-291578

Dubins in a 1=135174
NPC cube
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Algorithms
and numerical
experiments We determine the CL paths from u to v with initial direction U by the

bisection method.
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Algorithms
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experiments The directed angle © between a tangent to the initial arc, and the

geodesic from the foot of the tangent to v, is a continuous function. ..



Determination of CL paths with the bisection

method

Markov- 11=-0.782022
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Algorithms
and numerical . Lo
experiments The directed angle © between a tangent to the initial arc, and the

geodesic from the foot of the tangent to v, is a continuous function.

The zeroes of © correspond to CL paths from u to v.



Markov-
Dubins in a
NPC cube

complex

Algorithms
and numerical
experiments

Determination of CL paths with the bisection

method

1=-0.782022
12=-0.248582
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All CL paths from u to v with length less than some prescribed maximal
length L can be found by finitely many applications of the bisection
method.
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Determination of CL paths with the bisection
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Determination of CL paths with the bisection
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Existence of CL paths

Markov- In the d-plane (d > 5), a CL path between two points with given initial
g direction and curvature constant x > 0 need not exist.

complex

To see why, we must look at the behavior of rays of constant curvature in
Xa

B By a (topological) ray in a space X, we mean a map of a half-line into X.

m Not necessarily embedded or geodesic

Algorithms
and numerical
experiments



Existence of CL paths

Markov- In the d-plane (d > 5), a CL path between two points with given initial
g direction and curvature constant x > 0 need not exist.
complex

To see why, we must look at the behavior of rays of constant curvature in
Xg
B By a (topological) ray in a space X, we mean a map of a half-line into X.
m Not necessarily embedded or geodesic

m Aray in the d-plane which does not turn sharply enough cannot return to its
starting point:

Algorithms
and numerical
experiments




Classifying rays of constant curvature in Xy

Markov- Numerical experiments reveal three possibilities for a ray
Dubins in a

NPC cube . % .
complex v [37 OO) - Xy =Xy~ Vert(Xd)
) 4l  of constant curvature x > 0...
P :a%?i&‘?m/ Y4
{ ) \ it &
o ) g
3 S ¥
‘ / K
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AR S S A x ®WL //r
Algorithms Rose curves Embedded circles Proper rays

and numerical
experiments

..whose behavior is not a function of x when d > 5
m Aray [a,00) — H2 of constant curvature  is proper if k < 1, 0r a
circle if x > 1. Similarly for R.

m 3~ : [a,00) — X5 of constant curvature x; > 0 (i = 1,2) with v1 a
circle and . a proper ray, while 0.895 = k1 < k2 = 0.968.



Inaccessibility and properness

Markov- We can identify regions of the d-plane which are inaccessible by a

Dubins in a

NPC aube CL path  if the initial arc of ~ is a subarc of a proper ray.

complex

m A map is proper if the preimage of every compact set is compact.

m Aray v : [a,00) — X eventually never returns to a subset S of X if
for some t > a,
Sny([t,o)) =2,
and v(s) € S for some s < t.

m Aray is proper < it eventually never returns to each cell it meets.

Proper rays of
constant
curvature in
Xy



Inaccessibility and properness

Markov- We can identify regions of the d-plane which are inaccessible by a

g CL path ~ if the initial arc of + is a subarc of a proper ray.

e m Aray v : [a,0) — X eventually never returns to a subset S of X if
for some t > a,

Sny([t, o)) =2,
and v(s) € S for some s < t.

m Avray is proper <= it eventually never returns to each cell it meets.

Rough idea: To show a ray in Xy
is proper, construct a sequence
of nested halfspaces H, such
that v eventually never returns to
each halfspace.

Proper rays of
constant
curvature in
Xy




Inaccessibility and properness

Markov- We can identify regions of the d-plane which are inaccessible by a

g CL path ~ if the initial arc of + is a subarc of a proper ray.

e m Aray v : [a,0) — X eventually never returns to a subset S of X if
for some t > a,

Sny([t, o)) =2,
and v(s) € S for some s < t.

m Avray is proper <= it eventually never returns to each cell it meets.

Formally: Construct a sequence
of  successively  osculating
hyperplanes, called a stack,
with respect to which the ray is
properly segmented.

Proper rays of
constant
curvature in
Xy

(Definitions to follow.)



Hyperplanes in a square complex
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Proper rays of
constant

S A midplane of a 2-cell is a geodesic segment joining the
midpoints of its opposite sides.




Hyperplanes in a square complex
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Proper rays of

constant Two such midplanes m, m’ are equivalent if their intersection is

curvature in

Xy the midpoint of some edge.

The equivalence class of a midplane under the transitive closure
of this relation is a (1-dimensional) hyperplane.



Hyperplanes in a square complex
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Proper rays of
constant

e in A hyperplane H is dual to an edge E if some midplane in H
intersects E.




Hyperplanes in a square complex
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Proper rays of
constant

S The hyperplanes determir_1e a partition of Edges(X) into
parallelism classes.




Osculating hyperplanes
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Proper rays of
constant

curvature in Let H and H' be hyperplanes of a cube complex X.
Xd We say H and H' osculate, and write H ) H’,

if there exist adjacent edges E and E’ of X such that H is dual to E,
H' is dual to E’, and E and E’ are not both contained in any 2-cell.



Osculating hyperplanes
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Let H and H' be hyperplanes of a cube complex X.
We say H and H’ osculate, and write H )( H',

if there exist adjacent edges E and E’ of X such that H is dual to E,

Proper rays of H' is dual to E’, and E and E’ are not both contained in any 2-cell.

constant
curvature in

Xd m Counterexample: If the edges E and E’ in the definition are
adjacent sides of some square cell Q, then H and H' must
meet in Q.



Stacks

Mvings A stack in a cube complex X is a sequence (Hp);_, of
ubins In a

NPG cube successively osculating hyperplanes, H, )( Hp 1.

complex

We would like the hyperplanes in a stack to satisfy two properties:

m Each hyperplane should divide the space (which in our case,
is homeomorphic to R?) into two disjoint halfspaces.

m The hyperplanes should define two sequences of nested
halfspaces, a “backward” sequence nested from smaller to
larger, and a “forward” sequence nested from larger to
smaller.

If the hyperplanes of a stack satisfy these two properties, we call
it an oriented stack.

Stacks and scaffolds



Stacks

Markov- A stack in a cube complex X is a sequence (Hp);_, of
Dubins in a -

NPG cube successively osculating hyperplanes, H, )( Hp 1.
e A stack (Hp)_; is oriented if

m X ~ H, has two connected components for each n, and
m if the components Hi of X ~. H, are labeled so that

Hy < H,.,and H > H/_, for each n.
A
\ H; \ H3| Hy - |
NN LT
N
| LA ‘
// / | \ N\
/1 &S
e | ~
Stacks and scaffolds ‘ //H* - IH;—> \\H;—»

Schematic diagram of an oriented stack of hyperplanes (dashed lines)



Stacks

Markov- But in an arbitrary square complex, osculating hyperplanes need not
Dubins in a

PO e behave as nicely as our diagram suggests.
complex <—H3\ eH{l kH;/
~ - /dr/'
NN
AN | [ /
) | [
// I \ N
e // [ \\ \\
SN

We can easily construct square complexes in which
m a hyperplane crosses itself (edges dual to hyperplane shown in red)

Stacks and scaffolds

#{components of complement} # 2



Stacks

Markov- But in an arbitrary square complex, osculating hyperplanes need not
Dubins in a

NPG cubo behave as nicely as our diagram suggests.
complex | /
<H «H; | <Hj
mela ~ \ | / " |
IR
A | [/
)| | [ (
// / | LN\
-7 / | AN
B /Hia H;-»\H;-.
/X

We can easily construct square complexes in which
m two osculating hyperplanes intersect (dual edges highlighted)

Stacks and scaffolds

halfspaces not nested




Xy is an A-special cube complex

Markov-
Dubins in a
NPC cube

complex

Lemma

Let H = (Hn)}_ be a stack of hyperplanes in Xy (d > 4).
Then H can be oriented.

Proof (sketch). Xy is the Davis complex of a RACS, hence a
CAT(0) cube complex, hence A-special. Then osculating
hyperplanes do not intersect. The complement in Xy of each
hyperplane has two components, and by a connectedness

argument, H can be oriented. ]

Stacks and scaffolds



Showing a ray is proper using osculating
hyperplanes

Markov-
Dubins in a Lemma

NPC cube Aray -y : [a,0) — Xy is proper if for some

ash<b<B<--
and some oriented stack (Hn);2, of hyperplanes, we have

'y([tn,oo)) c HT.

This Lemma gives a sufficient condition for a ray to be proper.

B The condition is simple, but impractical

m Even for a geodesic path, finding the breakpoints can only be done
iteratively

m (A-O-S): The breakpoints of a geodesic have no closed form analytic
description

m We need a systematic procedure for building an infinite stack in the d-plane

SEFO AT B m Rather than focusing on the intersection of the ray with infinitely many

hyperplanes, we analyze the square path for the ray, which has an easily

described combinatorial structure



Properly segmented square paths

Markov-
Dubins in a
NPC cube

complex

Theorem

A ray v in Xy is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

Ju rmela

We now define properly segmented for a square path, rather than for a
ray. ..

Stacks and scaffolds



Properly segmented square paths
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Theorem

A ray v in Xy is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

Julie Carmela
La Corte

An edgewise square path (Q,);; is properly segmented by an oriented
stack (Hk)p. if there exist 1 < a; < by < a2 < bz < --- such that for
each ke N,

(1) Upe,, Qn < Carrier(H),

Stacks and scaffolds

The carrier of a subset A of a cube complex X is the smallest subcomplex of X containing A.



Properly segmented square paths

Markov-
Dubins in a Theorem

Pk A ray ~y in Xy is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

Julie Carmela
La Corte
An edgewise square path (Q,);; is properly segmented by an oriented

stack (Hk)p. if there exist 1 < a; < by < a2 < bz < --- such that for

each ke N,
(1) Upe,, Qn < Carrier(H),

(2) Uj’(:+b1k;11 Qn c X~ (Hk ) Hk+1),

Stacks and scaffolds



Properly segmented square paths

Markov-
Dubins in a Theorem

“ci?nﬁ.“;e A ray v in Xy is proper if it has an edgewise square path that is properly

segmented with respect to some oriented stack of hyperplanes.

Julie Carmela
La Corte
An edgewise square path (Qn);~; is properly segmented by an oriented

stack (Hk)y_ if there exist 1 < a; < by < a2 < bz < --- such that for

each ke N,
(1) Upe,, Qn < Carrier(Hy),
(2) Uak+1*1 On c X~ (Hk U Hk+1), and

n=>by+1

3) U*.' Qnand Uzk;b‘kJr1 Q, meet distinct components of

n=ayk_1

( ?(:ak On) N Hk.

Stacks and scaffolds




Properly segmented square paths

Markov-
oupema
Pk A ray ~y in Xy is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

Stacks and scaffolds

Given a square path Q for a ray of constant curvature, how do we build a stack of
hyperplanes with respect to which Q is properly segmented?



Unfolding and refolding

Dubns e m Transfer a square path Q = (Qx)¥_, for v in Xy to E? by
complex continuation, keeping track of cell structure.

Stacks and scaffolds



Unfolding and refolding

Unfolding complex ¢ and folding map ¢/ — 2

Markov-
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complex
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P

unfolding U/

Stacks and scaffolds



Unfolding and refolding

Unfolding complex ¢ and folding map ¢/ — 2
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unfolding U/

Stacks and scaffolds



Unfolding and refolding

Unfolding complex ¢ and folding map ¢/ — 2
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complex

unfolding U/

Stacks and scaffolds



Unfolding and refolding

Unfolding complex ¢ and folding map ¢/ — 2

Markov-
Dubins in a
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complex Uy Vgt muvw ysuv
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v s
unfolding U/
[ Y
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, d

Stacks and scaffolds



Unfolding and refolding

Unfolding complex ¢ and folding map ¢/ — 2
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unfolding U/
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Stacks and scaffolds



Unfolding and refolding

Unfolding complex ¢ and folding map ¢/ — 2

Markov-
Dubins in a
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complex !
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S
vst VSU-VSuv vsyt
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VeV VSVS

unfolding U/

Stacks and scaffolds



Unfolding and refolding

Unfolding complex ¢4 and folding map ¢4 — E2

Markov-
Dubins in a
NPC cube it “

complex

ystu vsuvt

vst VSu-vsuv vsyt
SVst

unfolding U
2
E \&QQ\_Q ~
VSt VSt——Vt——uyt ‘\0‘(\,‘9 q
vsu S v 2 [a OO) 2 _ Xd

VSUV - \VSV-——V§

Stacks and scaffolds

VSuvt-vsvt-vsvst




Unfolding and refolding

Unfolding complex ¢4 and folding map ¢4 — E2
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complex /2 i
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unfolding U
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Stacks and scaffolds

VSUVE-VSVEVSVStvsvstu




Unfolding and refolding

Unfolding complex ¢4 and folding map ¢4 — E2
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Finite stacks in E?

Do m Transfer a square path Q = (Qx)y; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

Stacks and scaffolds After identifying these four finite stacks in E2, we have enough information to
construct an infinite stack in Xy with respect to which the square path of the
original ray ~ is properly segmented, and it follows that  is proper.



Finite stacks in E?

Do m Transfer a square path Q = (Qx)y; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

Ju nela

R — We will transfer each of the four finite stacks into Xj.



Finite stacks in E?

Do m Transfer a square path Q = (Qx)y; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

Ju nela

Stacks and scaffolds When transferring a stack from E2 to X4, choices must be made.



Finite stacks in E?

Do m Transfer a square path Q = (Qx)y; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

Stacks and scaffolds The carriers of a pair of osculating hyperplanes of E2 meet along infinitely
many pairs of incident 2-cells. ..



Transferring a stack

Do m Transfer a square path Q = (Qx)y; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

m Transfer each stack in E? to X.

...and each selection of such a pair determines a different pair of
hyperplanes in Xy.

Stacks and scaffolds

We keep track of our choices using what we call a scaffold.



Transferring a stack

Do m Transfer a square path Q = (Qx)y; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

m Transfer each stack in E? to X.

A scaffold is the minimal data needed to carry out the transfer of a stack
between two square complexes in a controlled way.

Stacks and scaffolds

It consists of a sequence of pairs of adjacent edges, respectively dual to
each pair of successive hyperplanes in a stack.



Transferring a stack

Do m Transfer a square path Q = (Qx)y; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

Ju nela

m Transfer each stack in E? to X.

The original ray in Xy is properly segmented by the resulting finite stack.

Stacks and scaffolds



Infinite stack in Xy

Do Transfer a square path Q = (Qk)i>; for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

m Transfer each stack in E? to X.

m Assemble the finite stacks in Xy into an infinite sequence of
successively osculating hyperplanes.

Finally, we assemble the sequence of finite stacks in the d-plane, obtained from the four finite stacks
Siizels ane et in B2, into a single infinite stack with respect to which the given square path in X is properly
segmented.

Using the nonpositive curvature of Xy, we can assemble the finite stacks into a single infinite stack
if...



Infinite stack in Xy

Markov-

DUbInS na Transfer a square path Q = (Qk); for v in Xy to E? by

Ne clube continuation, keeping track of cell structure.
complex

m The resulting ray ¥ is a parametrized circle. Subdivide ¥ into four
arcs, each of which is properly segmented by a finite stack in E2.

m Transfer each stack in E? to X.

m Assemble the finite stacks in Xy into an infinite sequence of
successively osculating hyperplanes.

isElbowJoint[squareCenter , indexInSquarePath ] :=
(angle @@ neighborCenters [ squareCenter, indexInSquarePath]) = n/2;

Stacks and scaffolds

...we can find four suitable “reflex angles” in the interior component of the boundary of the square
2
path in E<.

This can always be done if the carrier of the circle in E? is an annulus.



Sufficient condition for a ray in X7 of constant
curvature to be proper

Markov-
Dubins in a
NPC cube

Annulus Condition

Lety :[a,00) — XF = X4 \ Vert(Xy) (d = 5) be a curve of constant
curvature k > 0. Let U be an unfolding of a locally monotone edgewise
square path Q in Xy for~y. Let p : U — E? be a cellular local isometry.

omeo

Iflmage ¢ T 81 x I, then ~ is a proper ray.

Stacks and scaffolds




Characterization of curves of constant
curvature x > 0

Markov- anf
Dubins in a Small Block Condition

NPC cube
complex

Letv :[a,00) — XF (d = 5) be a curve of constant curvature x > 0.
Let U be an unfolding of a locally monotone edgewise square path Q in
X, fory. Let o : U — K2 be a cellular local isometry.

Ju rmela

SOI

Iflmage ¢ = [—1,1] x [=1, 1], then Image v is either an embedded
circle, or a rose curve made up of M = lcm{4, d} arcs.

Small Block condition
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