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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

(Markov, 1889): Formulated the problem with X “ R2 in a
little-known paper
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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

(Markov, 1889): Formulated the problem with X “ R2 in a
little-known paper

Practical application: How can an existing length of railroad track be
joined to a given destination, using as little new track as possible?

u

U v

Initial heading and position fixed; direction at the destination is not
specified

Minimal turning radius was needed to prevent derailment

Problem seems to have been largely forgotten until the 1950s
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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

(Dubins, 1957): Solves the problem with prescribed initial and
terminal direction, X “ R2

Finds that a shortest piecewise twice-differentiable solution always
exists

Length-minimizer is made up of at most three subarcs, each an arc
of a circle of radius R or a line segment

g

u

U

v

V
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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

(1960s–2000s): Other variations studied in robotics, game theory,
differential geometry, avionics

Variations all take X to be a Riemannian manifold, usually of
dimension 2 or 3

For us, X will be a nonpositively curved cube complex
More practical than it may appear. . .
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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

For us, X will be a nonpositively curved cube complex
(Ghrist, 2002): Applied comparison geometry to reconfiguration
problems for metamorphic robots (aggregates capable of changing
shape through the independent motion of their constituent cells)

Two metamorphic systems composed of hexagonal cells.
A cell on the boundary of the aggregate may pivot if unobstructed (LEFT).

Figures from Ghrist and Peterson, “The geometry and topology of reconfiguration” (2007)
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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

For us, X will be a nonpositively curved cube complex

(Ghrist and Peterson, 2007): Uses theoretical framework of 2002
paper to describe a wide range of dynamical systems

Articulated robotic limb8 R. GHRIST & V. PETERSON

FIGURE 4. A positive articulated robot arm example [left] with fixed
endpoint. One generator [center] flips corners and has as its trace
the central four edges. The other generator [right] rotates the end of
the arm, and has trace equal to the two activated edges.

FIGURE 5. The state complex of a 5-link positive arm has one cell of
dimension three, along with several cells of lower dimension.

systems is a discrete type of configuration space for these systems. Such spaces
were considered independently by Abrams [1] and also by Swiatkowski [38].

For example, if the graph is K5 (the complete graph on five vertices), N = 2, and
A = {0, 1, 2}, it is straightforward to show that each vertex has a neighborhood
with six edges incident and six 2-cells patched cyclically about the vertex. There-
fore, S is a closed surface. One can (as in [2]) count that there are 20 vertices, 60
edges, and 30 faces in the state complex. The Euler characteristic of this surface is
therefore −10. This surface can be given an orientation; thus, the state complex has
genus six.

Example 3.4 (digital microfluidics). An even better physical instantiation of the pre-
vious system arises in digital microfluidics [17, 18]. In this setting, small (e.g., 1mm
diameter) droplets of fluid can be quickly and accurately manipulated on a plate
covering a network of current-controlled wires by an electrowetting process that
exploits surface tension effects to propel a droplet. Applying a current drives the
droplet a discrete distance along the wire. In this setting, one desires a “laboratory
on a chip” in which droplets of various chemicals can be positioned, mixed, and
then directed to the appropriate outputs.

Representing system states as marked vertices on a graph is appropriate given the
discrete nature of the motion by electrophoresis on a graph of wires. This adds a

The robotic arm of Ghrist and Peterson.

Figure from Ghrist and Peterson, “The geometry and topology of reconfiguration” (2007)
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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

For us, X will be a nonpositively curved cube complex

(Ghrist and Peterson, 2007): Uses theoretical framework of 2002
paper to describe a wide range of dynamical systems

Articulated robotic limb
Protein folding

10 R. GHRIST & V. PETERSON

Any state for this reconfigurable system is one for which all vertices of each Γi are
labeled with zeros except for one vertex with a label 1. The resulting state complex
is a cubical complex which approximates the cylindrical coordination space, as pic-
tured in Fig. 6 [25, 24]. Of course, in the case where Γi = Γ for all i and the robots
Ri are sufficiently small, this reconfigurable system is exactly that of Example 3.3.

Example 3.6 (protein folding). Certain discrete models of protein folding are amenable
to a reconfigurable system analysis. In particular, the model proposed by Sali et al.
[36, 37] treats the protein molecule as a piecewise-linear chain in a cubic lattice of
edges. They model the folding process as a sequence of applications of local rules
(see Fig. 1(b) of [37]) reminiscent of the articulated robot arm of Example 3.2.

It is especially simple to write a reconfigurable system for a closed-chain version of
the model in [36, 37]. One represents the protein chains as states in a cubic edge lat-
tice with alphabet {0, 1} (occupied vs. unoccupied edges). Generators correspond
to the local rules of Fig. 7 which flip segments of length two and three respectively.
The resulting state complex will be a cubical complex approximating the configu-
ration space of the model protein loop.

FIGURE 7. Two local moves [left] for a simple model of a closed-
chain protein [right] rotate either two or three consecutive edges to
change conformations.

Example 3.7 (permutohedra). Consider a graph G and any finite alphabet. The gen-
erators have support and trace equal to a single edge; the local states exchange
distinct labels on the two vertices of the edge. This example becomes the system
of Example 3.3 if one permits only exchanges between the label 0 (i.e., unoccupied
sites) and any of the other non-zero labels (i.e., occupied sites).

The geometry of the state complex is very clean in cases where the graph G is a
5-gon and the alphabet consists of five elements, one per vertex. Since G has five
vertices, there are 5! = 120 vertices in the state complex, and these states may
uniquely be identified with S5, the permutation group on 5 elements. The gener-
ators of the reconfigurable system are adjacent transpositions, which comprise the

Model of a protein chain as a piecewise-linear chain in a cubical lattice.

Figure from Ghrist and Peterson, “The geometry and topology of reconfiguration” (2007)
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Markov-Dubins problems

Markov-Dubins problem with free terminal direction

Find the shortest path between two points u, v in a
space X, given a prescribed initial direction U and
prescribed minimal turning radius R ą 0.

For us, X will be a nonpositively curved cube complex

(Ghrist and Peterson, 2007): Uses theoretical framework of 2002
paper to describe a wide range of dynamical systems

Articulated robotic limb
Protein folding
Industrial track robots

Robots moving along tracks in a factory floor.
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Example of a reconfigurable system

Reconfiguration problem

Move the robots from their given current positions to
prescribed new positions in as short a time as possible
while avoiding collisions.

The classical approach in computer science to the reconfiguration
problem is to reformulate it as a problem of graph theory
This graph-theoretical problem is the starting point for the
construction of the cube complexes we will work with
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Graph-theoretic formulation of the
reconfiguration problem

Graph-theoretic formulation of the reconfiguration
problem

1 Discretize the two tracks, subdividing each into finitely
many edges. The result is the workspace graph W.
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Vertices of the transition graph

Graph-theoretic formulation of the reconfiguration
problem

1 Discretize the two tracks, subdividing each into finitely
many edges. The result is the workspace graph W.

2 Construct the transition graph T .
Records allowable configurations/states and allowable
transitions between states
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Vertices of the transition graph

Graph-theoretic formulation of the reconfiguration
problem

1 Discretize the two tracks, subdividing each into finitely
many edges. The result is the workspace graph W.

2 Construct the transition graph T .
The vertices of T are states of the system, represented
as labelings of VertpWq.
In our example, each vertex of T is a function
u : t1,2,3,4,5,6,7u Ñ t , , u.

A vertex of T



Markov-
Dubins in a
NPC cube
complex

Julie Carmela
La Corte

Motivation
Reconfigurable
systems

Fault tolerance

Existence
proof
Admissible paths

Smoothness at
breakpoints

Algorithms
and numerical
experiments

Proper rays of
constant
curvature in
Xd
Stacks and scaffolds

Small Block condition

Generators of a reconfigurable system

Edges of T
A set G of pairs of inverse elementary moves is
specified.

Such a pair is called a generator.

In our example, each elementary move slides one
robot on its track to an unoccupied adjacent vertex.

A generator ϕ is defined by the following pair of
moves:

If vertex 1 is occupied by and vertex 2 is unoccupied,
move to vertex 2.

If vertex 2 is occupied by and vertex 1 is unoccupied,
move to vertex 1.

ϕ
ÐÑ
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Edges of the transition graph

Edges of T
Each generator ϕ is represented as a pair of
labelings of a subset S of VertpWq. To apply ϕ to a
state u means to redefine u on S, obtaining a new
labeling

ϕrus : t1,2,3,4,5,6,7u Ñ t , , u.

Two states u, v P VertpT q are joined by an edge in
T if some generator ϕ P G toggles the system
between states u and v .

A collection of states that is closed under the
application of all generators is an (abstract)
reconfigurable system.
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Transition graph

The transition graph T is analogous to the Cayley graph of a
group, but need not be homogeneous: some generators
may not be applicable to some states.
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Graph-theoretic formulation of the
reconfiguration problem

Graph-theoretic formulation of the reconfiguration problem

1 Discretize the two tracks, subdividing each into finitely many
edges. The result is the workspace graph W.

2 Construct the transition graph T .

3 Find the shortest path from an initial state u P VertpT q to the
goal state v P VertpT q.
Such a path corresponds to a sequence of elementary moves that
reconfigures the system from state u to state v .

Drawback of graph-theoretical formulation

A shortest path in T need not be an efficient reconfiguration
strategy

Transition graph does not encode information about which
moves can be applied concurrently
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Graph-theoretic formulation of the
reconfiguration problem

Graph-theoretic formulation of the reconfiguration problem

1 Discretize the two tracks, subdividing each into finitely many
edges. The result is the workspace graph W.

2 Construct the transition graph T .

3 Find the shortest path from an initial state u P VertpT q to the
goal state v P VertpT q.
Such a path corresponds to a sequence of elementary moves that
reconfigures the system from state u to state v .

Drawback of graph-theoretical formulation

A shortest path in T need not be an efficient reconfiguration
strategy

Transition graph does not encode information about which
moves can be applied concurrently
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Geometric formulation of the reconfiguration
problem

Use cubes to encode concurrency
We say that k generators commute at a state u if they can
be applied to u simultaneously, and if the resulting
configuration is independent of the order in which they are
applied.

Wherever the 1-skeleton Qp1q of a k -cube appears in T ,
attach a k -cube if for each vertex u of Qp1q, the generators
corresponding to the edges incident with u commute at u.
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Geometric formulation of the reconfiguration
problem

By attaching cubes to the transition graph as described, the
configuration space of a reconfigurable system is realized
as a cube complex called the state complex.
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The state complex of a reconfigurable system

RECONFIGURATION 7

FIGURE 2. The generator for a 2-d hexagonal lattice system with
pivoting locomotion. The domain is the graph dual to the hex lattice
shown. Shaded cells are occupied, white are unoccupied. [left, top]
The local states uloc

0 and uloc
1 are shown. [left, bottom] The support

of the generator, with trace shaded. [right] A typical state in this
reconfigurable system.

FIGURE 3. For a line of hexagons filing out of a constrained tunnel,
the state complex is contractible.

the transition graph for this system is complicated, the state complex itself is con-
tractible: this is the case for all lengths N .

Example 3.3 (configuration space of points on a graph). Consider a graph G and al-
phabet A = {0, . . . , n} used to specify empty/occupied vertices. There are n types
of generators {φi}n

1 in this homogeneous system, one for each nonzero element of
A. The support and trace of each φi is precisely the closure of an (arbitrary) edge.
The local states of this φi evaluate to 0 on one of the endpoints and i on the other.
The homogeneous reconfigurable system generated from a state u on G having ex-
actly one vertex labeled i for each i = 1, . . . , n mimics an ensemble of N distinct
non-colliding points on the graph G. If we reduce the alphabet to {0, 1}, then the
system represents n identical agents.

This system is a discrete model of a collection of robots which are constrained to
travel along tracks or guidewires [22, 23]. The associated state complexes for these

State complex for a metamorphic robotic system

composed of pivoting hexagonal tiles (Ghrist-Peterson, 2007)

Interior points of a cube are intermediate stages of a
transition between states.

A path along a k -cube’s diagonal represents the
simultaneous application of the k commuting generators
corresponding to the k parallelism classes of the cube’s
edges.

A path from u to v in the state complex determines a
strategy for reconfiguring the system from state u to state v .
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The state complex of a reconfigurable system

RECONFIGURATION 7

FIGURE 2. The generator for a 2-d hexagonal lattice system with
pivoting locomotion. The domain is the graph dual to the hex lattice
shown. Shaded cells are occupied, white are unoccupied. [left, top]
The local states uloc

0 and uloc
1 are shown. [left, bottom] The support

of the generator, with trace shaded. [right] A typical state in this
reconfigurable system.

FIGURE 3. For a line of hexagons filing out of a constrained tunnel,
the state complex is contractible.

the transition graph for this system is complicated, the state complex itself is con-
tractible: this is the case for all lengths N .

Example 3.3 (configuration space of points on a graph). Consider a graph G and al-
phabet A = {0, . . . , n} used to specify empty/occupied vertices. There are n types
of generators {φi}n

1 in this homogeneous system, one for each nonzero element of
A. The support and trace of each φi is precisely the closure of an (arbitrary) edge.
The local states of this φi evaluate to 0 on one of the endpoints and i on the other.
The homogeneous reconfigurable system generated from a state u on G having ex-
actly one vertex labeled i for each i = 1, . . . , n mimics an ensemble of N distinct
non-colliding points on the graph G. If we reduce the alphabet to {0, 1}, then the
system represents n identical agents.

This system is a discrete model of a collection of robots which are constrained to
travel along tracks or guidewires [22, 23]. The associated state complexes for these

State complex for a metamorphic robotic system

composed of pivoting hexagonal tiles (Ghrist-Peterson, 2007)

(Ghrist, 2002): The state complex of a reconfigurable system is a
nonpositively curved cube complex.

When u and v are fixed, efficient algorithms exist for finding the
shortest path between them.

(Ardila-Owen-Sullivant, 2011): General nonpositively curved
cube complex

(Chepoi-Maftuleac, 2012): Nonpositively curved rectangular
complexes
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Fault tolerance

But in a real world environment, changing circumstances in the physical
workspace may intervene to make a reconfiguration strategy that is
already in progress impossible to complete.

Suppose a goal state has been prescribed, but an obstruction
prevents us from attaining it. A new goal state in the state complex
may then be prescribed.

It is inefficient to bring the system to a halt whenever a new strategy
is prescribed, and impractical to instantaneously follow the new
strategy without stopping.

We therefore seek a solution to the problem of finding a shortest
path in the state complex with a given initial direction.

In order to limit the stress placed on the system’s physical
components, we impose a bound on the path’s curvature.

Before we give a formal statement of our central problem, we will briefly
review the definition of a nonpositively curved geodesic space. . .



Markov-
Dubins in a
NPC cube
complex

Julie Carmela
La Corte

Motivation
Reconfigurable
systems

Fault tolerance

Existence
proof
Admissible paths

Smoothness at
breakpoints

Algorithms
and numerical
experiments

Proper rays of
constant
curvature in
Xd
Stacks and scaffolds

Small Block condition

Nonpositive curvature
Comparison triangles

(LEFT:) A geodesic triangle ∆xyz in a square complex, and (RIGHT:) a comparison triangle in R2 for ∆xyz

A metric space pX , dq is a geodesic space if every x , y P X can be
joined by a path in X of length ` “ dpx , yq, called a geodesic.

A geodesic from x to y will be denoted by rxys.

Let x , y , z be three distinct points in a geodesic space. Then

∆xyz :“ rxys Y ryzs Y rzxs

is a geodesic triangle, and a comparison triangle ∆x 1y 1z 1 for ∆xyz is
a triangle in the Euclidean plane with corresponding sides equal in
length.
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Nonpositive curvature
Thin triangles

A geodesic triangle ∆xyz is thin if the distance between any two points
on ∆xyz is no larger than the distance between the corresponding points
on a comparison triangle:

dpp, qq ď dpp1, q1q.

p

q

x

y

z p¢

q¢

x¢

y¢

z¢

A geodesic space X is
nonpositively curved (NPC) at a point w if all geodesic triangles
sufficiently near w are thin,

nonpositively curved if X is nonpositively curved at every point,

CAT(0) if X is simply connected and nonpositively curved.
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Nonpositive curvature
Nonpositively curved square complexes

The square complex obtained by arranging d copies of the
unit square r0,1s ˆ r0,1s cyclically around a central vertex is
nonpositively curved if d ě 4.

A positively curved (top row) and
some nonpositively curved (bottom row)
piecewise Euclidean square complexes

Boundaries of metric balls (dashed) about center vertex
are unions of arcs of Euclidean circles
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Central problem: Markov-Dubins problem with
free terminal direction in a NPC cube complex

Markov-Dubins problem with free terminal direction

Let κ ą 0. Given initial and terminal positions u and v in a
nonpositively curved cube complex X, find the shortest
unit-speed path γ in X from u to v such that

γ has prescribed initial direction U P linkpuq,
|γ2| ď κ a.e. in local coordinates, and
γ is smooth (has turning angle 0) at breakpoints.
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Sufficient collection of paths

Existence theorem
Preliminary:

Define a collection C of “admissible” unit-speed paths γ so
that admissible paths satisfy the boundary conditions pu,U, vq
and the curvature constraint with κ ą 0.

Then show that C ‰ ∅ ùñ C contains a shortest path.

How should we define “admissible”?

Minimally, want C1 in local coordinates
Twice-differentiable in local coordinates, with curvature
|γ2| ď κ?
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Sufficient collection of paths

Existence theorem
Preliminary:

Define a collection C of “admissible” unit-speed paths γ so
that admissible paths satisfy the boundary conditions pu,U, vq
and the curvature constraint with κ ą 0.

Then show that C ‰ ∅ ùñ C contains a shortest path.

How should we define “admissible”?

Minimally, want C1 in local coordinates
Twice-differentiable in local coordinates, with curvature
|γ2| ď κ?
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Sufficient collection of paths

Existence theorem
Preliminary:

Define a collection C of “admissible” unit-speed paths γ so
that admissible paths satisfy the boundary conditions pu,U, vq
and the curvature constraint with κ ą 0.

Then show that C ‰ ∅ ùñ C contains a shortest path.

How should we define “admissible”?

Minimally, want C1 in local coordinates
Twice-differentiable in local coordinates, with curvature
|γ2| ď κ? X
(Dubins, 1957): For certain choices of κ ą 0, U P S1, and
u, v P R2, the collection D of twice-differentiable unit-speed
paths γ : ra, bγs Ñ R2 with

γpaq “ u, γ1paq “ U, γpbγq “ v , |γ2| ď κ

does not contain an element of minimum length. . .
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Sufficient collection of paths

(Dubins, 1957): For certain choices of κ ą 0, U P S1, and
u, v P R2, the collection D of twice-differentiable unit-speed
paths γ : ra, bγs Ñ R2 with

γpaq “ u, γ1paq “ U, γpbγq “ v , |γ2| ď κ

does not contain an element of minimum length.

But for any choice of κ ą 0, u,U, and v , there exists a C1 and
piecewise twice-differentiable path β with length
`pβq “ inf

cPD
`pcq.

Example:

u

U
v

b

Pick
κ “ 1, u “ p0, 0q, U “ p0, 1q, v “ p3, 1q,

and let β be the shortest CL path in R2 satisfying these boundary conditions and
curvature bound.

A CL path is the C1 concatenation of a circular arc and a line segment.
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Sufficient collection of paths

(Dubins, 1957): For certain choices of κ ą 0, U P S1, and
u, v P R2, the collection D of twice-differentiable unit-speed
paths γ : ra, bγs Ñ R2 with

γpaq “ u, γ1paq “ U, γpbγq “ v , |γ2| ď κ

does not contain an element of minimum length.

But for any choice of κ ą 0, u,U, and v , there exists a C1 and
piecewise twice-differentiable path β with length
`pβq “ inf

cPD
`pcq.

Example:

u

U
v

b

Then
Every γ P D has `pγq ą `pβq.
For any ε ą 0, there exists γ P D with `pβq ă `pγq ă `pβq ` ε.
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Sufficient collection of paths

How should we define “admissible”?

C1 in local coordinates, with κ-Lipschitz derivative

Rules out abrupt changes in direction which would put
stress on moving parts of the system

Permits CL paths

Can use Dubins’ characterization of optimal paths to
describe optimal paths contained in a cell

We now define piecewise-Lipschitz differentiability for curves in a
cube complex.
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Small Block condition

Piecewise Lipschitz-differentiable curves in a
cube complex

Let γ : ra, bs Ñ X be a path in a cube complex X , and let

a “ t1 ă t2 ă ¨ ¨ ¨ ă tm “ b

be a partition of ra, bs. A sequence pQk q
m´1
k“1 of cells in X is a cube path

for γ with breakpoints ptk qmk“1 if

γ
`

rtk , tk`1s
˘

Ă Qk , Qk Ć Qk`1, Qk Č Qk`1.

A cube path for a curve γ : ra,8q Ñ X is defined similarly, taking m “ 8.

We call each
γk :“ γ

ˇ

ˇ

rtk ,tk`1s

a segment of γ.

Note γptk q P Qk´1 X Qk

edgewise cube path:
each Qk X Qk`1 is an edge

locally monotone square path:
Qk´1 X Qk ‰ Qk X Qk`1
for each suitable k , and
dim Qk “ 2 for all k A square path which is not locally monotone
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Piecewise Lipschitz-differentiable curves in a
cube complex

A path in RN is κ-C1,1 (or κ-Lipschitz differentiable) if its
derivative exists and is κ-Lipschitz.

Let X be a cube complex, let κ ą 0, and let M P N (M ě 2).
A path

γ : ra,bs Ñ X

is κ-C1,1`M
˘

(or κ-Lipschitz differentiable with at most M
breakpoints) if there exists a cube path pQk q

m´1
k“1 for γ with

breakpoints

a “ t1 ă t2 ă ¨ ¨ ¨ ă tm “ b pm ď Mq

such that each segment

γk : rtk , tk`1s Ñ Qk

is κ-C1,1 in coordinates.
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Length-minimal element of Cpκ,M,u, v ,Uq

Let X be a nonpositively curved locally finite cube complex. Fix

u, v in X such that u ‰ v ,

a unit tangent vector U to ppCλq at pλpuq for some λ,

κ ą 0, and

M P N (n ě 2).

Let
Cpκ,M,u, v ,Uq

be the set of κ-C1,1pMq unit-speed paths γ : ra,bγs Ñ X with

γpaq “ u, γpbγq “ v , γ1paq “ U.

Theorem

If C “ Cpκ,M,u, v ,Uq is nonempty, then C contains a path β
of minimal length among all paths in C.
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Smoothness at breakpoints

The proof of the theorem uses only advanced calculus and Arzela-Ascoli. We
begin with a sequence of admissible paths γn P C such that

`pγnq Œ inf
cPC

`pcq,

and repeatedly pass to subsequences so that
there is a single cube path pQk q

8
k“1 with breakpoints ptk q8k“1 for all γn, and

for each k , each of
`

γn
ˇ

ˇ

rtk ,tk`1s

˘8

n“1,
`

γ1n
ˇ

ˇ

rtk ,tk`1s

˘8

n“1 converge.

We then show that the uniform limit γ of the γn is in C.
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Smoothness at breakpoints

The proof of the theorem uses only advanced calculus and Arzela-Ascoli. We
begin with a sequence of admissible paths γn P C such that

`pγnq Œ inf
cPC

`pcq,

and repeatedly pass to subsequences so that
there is a single cube path pQk q

8
k“1 with breakpoints ptk q8k“1 for all γn, and

for each k , each of
`

γn
ˇ

ˇ

rtk ,tk`1s

˘8

n“1,
`

γ1n
ˇ

ˇ

rtk ,tk`1s

˘8

n“1 converge.

We then show that the uniform limit γ of the γn is in C.

More is needed to prove the existence of a solution to the Markov-Dubins problem:
we want our paths to have zero turning angle

π ´=
`

γ´k , γ
`
k

˘

P r0, πs, γ´k :“ γ
ˇ

ˇ

ptk´ε,tk s
, γ`k :“ γ

ˇ

ˇ

rtk ,tk`εq
,

for each interior breakpoint tk .

gk
-

gk
+

gHtkL
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Small Block condition

Smoothness at breakpoints

The proof of the theorem uses only advanced calculus and Arzela-Ascoli. We
begin with a sequence of admissible paths γn P C such that

`pγnq Œ inf
cPC

`pcq,

and repeatedly pass to subsequences so that
there is a single cube path pQk q

8
k“1 with breakpoints ptk q8k“1 for all γn, and

for each k , each of
`

γn
ˇ

ˇ

rtk ,tk`1s

˘8

n“1,
`

γ1n
ˇ

ˇ

rtk ,tk`1s

˘8

n“1 converge.

We then show that the uniform limit γ of the γn is in C.

More is needed to prove the existence of a solution to the Markov-Dubins problem:
we want our paths to have zero turning angle

π ´=
`

γ´k , γ
`
k

˘

P r0, πs, γ´k :“ γ
ˇ

ˇ

ptk´ε,tk s
, γ`k :“ γ

ˇ

ˇ

rtk ,tk`εq
,

for each interior breakpoint tk .

The property of having zero turning angle at breakpoints is preserved when
passing to the limit.
We carry out the same argument as for the previous theorem, but this time,
we’ll require that admissible paths have zero turning angle at interior
breakpoints.
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Existence result for Markov-Dubins problem
with free terminal direction

Fn

Gn

wn xn

ynzn

RN

X

an

bn

xnwn yn

Fn

Gn

wn xn

ynzn

RN

X

an

bn

xnwn yn

Some technical issues and their solutions:
lim

nÑ8
`pγn

k q ‰ 0 Construct geodesics with same directions
lim

nÑ8
`pγn

k`1q ‰ 0 as subarcs (above fig.) and use u.s.c. of =

lim
nÑ8

`
`

γn
1 ˚ ¨ ¨ ¨ ˚ γ

n
k
˘

“ 0 Reparametrize and delete
pQi q

k
i“1 from cube path

lim
nÑ8

`pγn
k q ‰ 0 Total curvature is lower semicontinuous,

lim
nÑ8

`pγn
k`1q “ 0 6 τk ` τk`2 “ limn τnrtk , tk`3s ě τ rtk , tk`3s

lim
nÑ8

`pγn
k`2q ‰ 0 “ τk `=pγ̄k , γk`2q ` τk`2, 6 =pγ̄k , γk`2q “ 0.

lim
nÑ8

`pγn
k ˚ ¨ ¨ ¨ ˚ γ

n
mq “ 0 Reparametrize and delete

pQi q
m´1
i“k from cube path

Here γn
k “ γn

ˇ

ˇ

rtk ,tk`1s
.
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Existence result for Markov-Dubins problem
with free terminal direction

We say a κ-C1,1
pMq path γ is smooth at breakpoints if there exists a

cube path pQk q
m´1
k“1 (m ď M) for γ with breakpoints ptk qmk“1 such that γ

has zero turning angle at γptk q for 1 ă k ă m.

For κ,M, u, v ,U as above, write

C0 “ C0pκ,M, u, v ,Uq

“ tγ P Cpκ,M, u, v ,Uq : γ is smooth at breakpointsu.

Theorem

If C0 is nonempty, then C0 contains a path β of minimal length among all
paths in C0.
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Small Block condition

Numerical solution of the Markov-Dubins
problem with free terminal vector

We will now outline an algorithm for numerically finding the shortest CL
path between two points with prescribed initial direction in a NPC square
complex.

Markov found that the solution to the Markov-Dubins problem with
free terminal direction in R2 always exists and is a CL path.

In a NPC square complex, an optimal CL path with prescribed
boundary conditions u,U, v and curvature bound κ ą 0 need not
exist, but if it does, our algorithm will find it.
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Small Block condition

Numerical solution of the Markov-Dubins
problem with free terminal vector

The particular square complex we’ll use to visualize the algorithm arises
from the reconfigurable system defined as follows.

Five distinctly labeled checkers are placed at the vertices of a
pentagon.

The generators are transpositions of the checkers on an edge.

Generators commute iff the corresponding edges are disjoint, and
no set of 3 edges is disjoint.
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Small Block condition

Numerical solution of the Markov-Dubins
problem with free terminal vector

The particular square complex we’ll use to visualize the algorithm arises
from the reconfigurable system defined as follows.

Five distinctly labeled checkers are placed at the vertices of a
pentagon.

The generators are transpositions of the checkers on an edge.

Generators commute iff the corresponding edges are disjoint, and
no set of 3 edges is disjoint.
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Small Block condition

Numerical solution of the Markov-Dubins
problem with free terminal vector

s

tu

v

w

s

s

t

t u

u

v

v

ww

Thus each vertex in the state complex is incident with exactly five
squares arranged cyclically.

The transition graph is the Cayley graph of the right-angled Coxeter
system

S “ ts, t , u, v ,wu,

W “ xS | s2 “ t2 “ u2 “ v2 “ w2 “ pstq2 “ ptuq2 “ puvq2 “ pvwq2 “ pwsq2 “ 1y.
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Small Block condition

Numerical solution of the Markov-Dubins
problem with free terminal vector

The state complex is a closed orientable surface of genus 16,
whose universal cover is the Davis complex of pW ,Sq.

X5

1

s

t

uv

w

st

susv

sw

stu stv
stw

sus
suv

suwsvs
svt

svw

swt
swu

tu

tv

tw

tus

tuv
tuw

tvs
tvt

tvw

twttwu

usuv
uw

usu
usvuswuvsuvt uvw

uwtuwu

vs
vt

vw

vstvsu
vsv

vsw

vtvvtw

vwt

vwu

wt

wu
wtu

wtvwtw

wus
wuw

ÝÑ

state complex

The universal cover of the state complex is a space we call the
5-plane X5.
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Small Block condition

Definition of the d-plane Xd

Definition. The d-plane Xd (d ě 4) is a simply connected surface
without boundary that is a piecewise Euclidean square complex with a
d-regular graph as its 1-skeleton.

E2 :“ X4.
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Small Block condition

Fault handling is a Markov-Dubins problem

For an illustration of the problem, suppose the system begins in a given
state,

and a goal state is given. . .
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Small Block condition

Fault handling is a Markov-Dubins problem

. . . but a new goal state is prescribed before the original goal state has been
attained.

At the instant when the new goal state is prescribed, we have a Markov-Dubins
problem with prescribed initial position, initial direction, and terminal position.

To find CL paths in a NPC square complex, we will need an algorithm for finding
geodesic paths.
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Small Block condition

Chepoi-Maftuleac unfolding

Chepoi and Maftuleac’s algorithm for finding geodesics depends on the following
result.

Theorem (Chepoi-Maftuleac, 2012)

The geodesic between two points u, v of a CAT(0) square complex X lies in a
subcomplex K of X which is isometric to a monotone planar polygon. Moreover,
K depends only on the choice of 2-cells containing u and v.

This result reduces the problem of finding shortest paths in X to that of
finding shortest paths in planar polygons: no shortcut from u to v is possible
by leaving K .

Here, a polygon P is monotone if every axis-aligned line segment with endpoints in P is contained in P.
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Small Block condition

Lee-Preparata funnel algorithm

Many algorithms for finding shortest paths in a monotone polygon exist.
We use the classic “funnel algorithm” of Lee and Preparata.

A monotone polygon P can be triangulated by edges Ei with endpoints on
the boundary of P
The dual graph of the triangulation is a path
The path determines an ordering of edges Ei that starts with the base of a
triangle containing the initial point u (green dot) and ends with the base of a
triangle containing the terminal point v (red dot)
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Small Block condition

Lee-Preparata funnel algorithm

The algorithm begins with a “funnel” F with legs ruLs and ruRs (blue), whose
apex is the initial point u, where rLRs is an edge of a triangle containing u
The funnel F consists of the cone of lines of sight between ruLs and ruRs
from u to the boundary of P
If the terminal point v lies in the funnel F , we are done: ruvs lies in P
If not, we look at the next edge E 1. If the resulting funnel is contained in the
current funnel F , we accept E 1 as the base of the funnel F 1 for the next step
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Small Block condition

Lee-Preparata funnel algorithm

If the next edge E 1 determines a funnel not contained in the current funnel,
we reject it, set F 1 “ F , and move to the next edge
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Small Block condition

Lee-Preparata funnel algorithm

If the next edge E 1 determines a funnel not contained in the current funnel,
we reject it, set F 1 “ F , and move to the next edge
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Small Block condition

Lee-Preparata funnel algorithm

If the next edge E 1 determines a funnel not contained in the current funnel,
we reject it, set F 1 “ F , and move to the next edge
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Small Block condition

Lee-Preparata funnel algorithm

If a leg of the funnel determined by the next edge crosses over or meets the
opposite leg of the current funnel F , we have found a segment of the
desired shortest path ruvs
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Small Block condition

Lee-Preparata funnel algorithm

We then reset u (green dot), choose a new initial edge E (brown) of the
triangulation, and repeat the process, halting if v lies in the current funnel or
if we have reached the final interior edge of the triangulation
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Small Block condition

Lee-Preparata funnel algorithm

If the resulting funnel is contained in the current funnel F , we accept E 1 as
the base of the funnel F 1 for the next step
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Small Block condition

Lee-Preparata funnel algorithm

If the resulting funnel is contained in the current funnel F , we accept E 1 as
the base of the funnel F 1 for the next step
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Lee-Preparata funnel algorithm

If the resulting funnel is contained in the current funnel F , we accept E 1 as
the base of the funnel F 1 for the next step
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Small Block condition

Lee-Preparata funnel algorithm

Halt: we have reached the final interior edge of the triangulation
The final segment begins with the current apex if v lies in the current funnel
F , and begins with L or R (whichever is closer to v ) if outside F
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Small Block condition

Determination of CL paths with the bisection
method

We determine the CL paths from u to v with initial direction U by the
bisection method.
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Small Block condition

Determination of CL paths with the bisection
method

The directed angle Θ between a tangent to the initial arc, and the
geodesic from the foot of the tangent to v , is a continuous function. . .
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Small Block condition

Determination of CL paths with the bisection
method

The directed angle Θ between a tangent to the initial arc, and the
geodesic from the foot of the tangent to v , is a continuous function.

The zeroes of Θ correspond to CL paths from u to v .
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Small Block condition

Determination of CL paths with the bisection
method

All CL paths from u to v with length less than some prescribed maximal
length L can be found by finitely many applications of the bisection
method.
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Determination of CL paths with the bisection
method
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Small Block condition

Existence of CL paths

In the d-plane (d ě 5), a CL path between two points with given initial
direction and curvature constant κ ą 0 need not exist.

To see why, we must look at the behavior of rays of constant curvature in
Xd

By a (topological) ray in a space X , we mean a map of a half-line into X .

Not necessarily embedded or geodesic
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Small Block condition

Existence of CL paths

In the d-plane (d ě 5), a CL path between two points with given initial
direction and curvature constant κ ą 0 need not exist.

To see why, we must look at the behavior of rays of constant curvature in
Xd

By a (topological) ray in a space X , we mean a map of a half-line into X .

Not necessarily embedded or geodesic

A ray in the d-plane which does not turn sharply enough cannot return to its
starting point:
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Classifying rays of constant curvature in Xd

Numerical experiments reveal three possibilities for a ray

γ : ra,8q Ñ X˚d :“ Xd r VertpXd q

of constant curvature κ ą 0. . .

Rose curves

Number of cells: 138<

Embedded circles

Length: 4.3008
Number of cells: 8
Curvature constant: k=0.968

Proper rays

. . . whose behavior is not a function of κ when d ě 5.

A ray ra,8q Ñ H2 of constant curvature κ is proper if κ ď 1, or a
circle if κ ą 1. Similarly for R2.

D γi : ra,8q Ñ X5 of constant curvature κi ą 0 (i “ 1, 2) with γ1 a
circle and γ2 a proper ray, while 0.895 “ κ1 ă κ2 “ 0.968.
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Small Block condition

Inaccessibility and properness

We can identify regions of the d-plane which are inaccessible by a
CL path γ if the initial arc of γ is a subarc of a proper ray.

A map is proper if the preimage of every compact set is compact.

A ray γ : ra,8q Ñ X eventually never returns to a subset S of X if
for some t ą a,

S X γ
`

rt ,8q
˘

“ ∅,
and γpsq P S for some s ă t .

A ray is proper ðñ it eventually never returns to each cell it meets.
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Small Block condition

Inaccessibility and properness

We can identify regions of the d-plane which are inaccessible by a
CL path γ if the initial arc of γ is a subarc of a proper ray.

A ray γ : ra,8q Ñ X eventually never returns to a subset S of X if
for some t ą a,

S X γ
`

rt ,8q
˘

“ ∅,
and γpsq P S for some s ă t .

A ray is proper ðñ it eventually never returns to each cell it meets.

Rough idea: To show a ray in Xd

is proper, construct a sequence
of nested halfspaces H´n such
that γ eventually never returns to
each halfspace.
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Small Block condition

Inaccessibility and properness

We can identify regions of the d-plane which are inaccessible by a
CL path γ if the initial arc of γ is a subarc of a proper ray.

A ray γ : ra,8q Ñ X eventually never returns to a subset S of X if
for some t ą a,

S X γ
`

rt ,8q
˘

“ ∅,
and γpsq P S for some s ă t .

A ray is proper ðñ it eventually never returns to each cell it meets.

Formally: Construct a sequence
of successively osculating
hyperplanes, called a stack,
with respect to which the ray is
properly segmented.

(Definitions to follow.)
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Small Block condition

Hyperplanes in a square complex

m

A midplane of a 2-cell is a geodesic segment joining the
midpoints of its opposite sides.
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Small Block condition

Hyperplanes in a square complex

H
m

Two such midplanes m, m1 are equivalent if their intersection is
the midpoint of some edge.

The equivalence class of a midplane under the transitive closure
of this relation is a (1-dimensional) hyperplane.
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Small Block condition

Hyperplanes in a square complex

E

H

A hyperplane H is dual to an edge E if some midplane in H
intersects E .
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Small Block condition

Hyperplanes in a square complex

H

The hyperplanes determine a partition of EdgespX q into
parallelism classes.
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Small Block condition

Osculating hyperplanes

E

E ¢

H

H ¢

Let H and H 1 be hyperplanes of a cube complex X .
We say H and H 1 osculate, and write H — H 1,

if there exist adjacent edges E and E 1 of X such that H is dual to E ,
H 1 is dual to E 1, and E and E 1 are not both contained in any 2-cell.
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Small Block condition

Osculating hyperplanes

Let H and H 1 be hyperplanes of a cube complex X .
We say H and H 1 osculate, and write H — H 1,

if there exist adjacent edges E and E 1 of X such that H is dual to E ,
H 1 is dual to E 1, and E and E 1 are not both contained in any 2-cell.

Counterexample: If the edges E and E 1 in the definition are
adjacent sides of some square cell Q, then H and H 1 must
meet in Q.
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Small Block condition

Stacks

A stack in a cube complex X is a sequence pHnq
8
n“1 of

successively osculating hyperplanes, Hn — Hn`1.

We would like the hyperplanes in a stack to satisfy two properties:

Each hyperplane should divide the space (which in our case,
is homeomorphic to R2) into two disjoint halfspaces.

The hyperplanes should define two sequences of nested
halfspaces, a “backward” sequence nested from smaller to
larger, and a “forward” sequence nested from larger to
smaller.

If the hyperplanes of a stack satisfy these two properties, we call
it an oriented stack.
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Small Block condition

Stacks

A stack in a cube complex X is a sequence pHnq
8
n“1 of

successively osculating hyperplanes, Hn — Hn`1.

A stack pHnq
8
n“1 is oriented if

X r Hn has two connected components for each n, and

if the components H˘n of X r Hn are labeled so that
H´n Ă H´n`1 and H`n Ą H`n`1 for each n.

Schematic diagram of an oriented stack of hyperplanes (dashed lines)
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Small Block condition

Stacks

But in an arbitrary square complex, osculating hyperplanes need not
behave as nicely as our diagram suggests.

We can easily construct square complexes in which
a hyperplane crosses itself (edges dual to hyperplane shown in red)

#tcomponents of complementu ‰ 2
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Small Block condition

Stacks

But in an arbitrary square complex, osculating hyperplanes need not
behave as nicely as our diagram suggests.

We can easily construct square complexes in which
two osculating hyperplanes intersect (dual edges highlighted)

halfspaces not nested
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Small Block condition

Xd is an A-special cube complex

Lemma

Let H “ pHnq
8
n“1 be a stack of hyperplanes in Xd (d ě 4).

Then H can be oriented.

Proof (sketch). Xd is the Davis complex of a RACS, hence a
CAT(0) cube complex, hence A-special. Then osculating
hyperplanes do not intersect. The complement in Xd of each
hyperplane has two components, and by a connectedness
argument, H can be oriented. l
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Small Block condition

Showing a ray is proper using osculating
hyperplanes

Lemma

A ray γ : ra,8q Ñ Xd is proper if for some

a ď t1 ă t2 ă t3 ă ¨ ¨ ¨

and some oriented stack pHnq
8
n“1 of hyperplanes, we have

γ
`

rtn,8q
˘

Ă H`n .

This Lemma gives a sufficient condition for a ray to be proper.

The condition is simple, but impractical
Even for a geodesic path, finding the breakpoints can only be done
iteratively
(A-O-S): The breakpoints of a geodesic have no closed form analytic
description
We need a systematic procedure for building an infinite stack in the d-plane
Rather than focusing on the intersection of the ray with infinitely many
hyperplanes, we analyze the square path for the ray, which has an easily
described combinatorial structure
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Small Block condition

Properly segmented square paths

Theorem

A ray γ in Xd is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

We now define properly segmented for a square path, rather than for a
ray. . .
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Properly segmented square paths

Theorem

A ray γ in Xd is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

An edgewise square path pQnq
8
n“1 is properly segmented by an oriented

stack pHk q
8
k“1 if there exist 1 ď a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ such that for

each k P N,

(1)
Ťbk

n“ak
Qn Ă CarrierpHk q,

The carrier of a subset A of a cube complex X is the smallest subcomplex of X containing A.
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Properly segmented square paths

Theorem

A ray γ in Xd is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

An edgewise square path pQnq
8
n“1 is properly segmented by an oriented

stack pHk q
8
k“1 if there exist 1 ď a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ such that for

each k P N,

(1)
Ťbk

n“ak
Qn Ă CarrierpHk q,

(2)
Ťak`1´1

n“bk`1 Qn Ă X r pHk Y Hk`1q,
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Small Block condition

Properly segmented square paths

Theorem

A ray γ in Xd is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

An edgewise square path pQnq
8
n“1 is properly segmented by an oriented

stack pHk q
8
k“1 if there exist 1 ď a1 ď b1 ă a2 ď b2 ă ¨ ¨ ¨ such that for

each k P N,

(1)
Ťbk

n“ak
Qn Ă CarrierpHk q,

(2)
Ťak`1´1

n“bk`1 Qn Ă X r pHk Y Hk`1q, and

(3)
Ťak´1

n“ak´1
Qn and

Ťbk`1
n“bk`1 Qn meet distinct components of

`
Ťbk

n“ak
Qn

˘

r Hk .
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Properly segmented square paths

Theorem

A ray γ in Xd is proper if it has an edgewise square path that is properly
segmented with respect to some oriented stack of hyperplanes.

Given a square path Q for a ray of constant curvature, how do we build a stack of
hyperplanes with respect to which Q is properly segmented?
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Unfolding and refolding

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

ra,8q
γ
- Xd
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Unfolding and refolding
Unfolding complex U and folding map U Ñ E2

unfolding U

ra,8q

pγ
6

γ
- Xd
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Unfolding and refolding
Unfolding complex U and folding map U Ñ E2

unfolding U

ra,8q

pγ
6

γ
- Xd
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Unfolding and refolding
Unfolding complex U and folding map U Ñ E2

unfolding U
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Unfolding and refolding
Unfolding complex U and folding map U Ñ E2

unfolding U
E2

� qγ

�
folding

map ϕ

ra,8q

pγ
6

γ - Xd
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Finite stacks in E2

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

After identifying these four finite stacks in E2, we have enough information to
construct an infinite stack in Xd with respect to which the square path of the
original ray γ is properly segmented, and it follows that γ is proper.
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Small Block condition

Finite stacks in E2

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

We will transfer each of the four finite stacks into Xd .
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Small Block condition

Finite stacks in E2

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

When transferring a stack from E2 to Xd , choices must be made.
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Finite stacks in E2

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

The carriers of a pair of osculating hyperplanes of E2 meet along infinitely
many pairs of incident 2-cells. . .
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Transferring a stack

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

Transfer each stack in E2 to Xd .

. . . and each selection of such a pair determines a different pair of
hyperplanes in Xd .

We keep track of our choices using what we call a scaffold.
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Small Block condition

Transferring a stack

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

Transfer each stack in E2 to Xd .

A scaffold is the minimal data needed to carry out the transfer of a stack
between two square complexes in a controlled way.

It consists of a sequence of pairs of adjacent edges, respectively dual to
each pair of successive hyperplanes in a stack.
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Transferring a stack

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

Transfer each stack in E2 to Xd .

The original ray in Xd is properly segmented by the resulting finite stack.
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Infinite stack in Xd

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

Transfer each stack in E2 to Xd .

Assemble the finite stacks in Xd into an infinite sequence of
successively osculating hyperplanes.

Q
Ó
p-1 Q

Ó
p

Q
Ó
p+1

Finally, we assemble the sequence of finite stacks in the d-plane, obtained from the four finite stacks
in E2, into a single infinite stack with respect to which the given square path in Xd is properly
segmented.

Using the nonpositive curvature of Xd , we can assemble the finite stacks into a single infinite stack
if. . .
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Infinite stack in Xd

Transfer a square path Q “ pQk q
8
k“1 for γ in Xd to E2 by

continuation, keeping track of cell structure.

The resulting ray qγ is a parametrized circle. Subdivide qγ into four
arcs, each of which is properly segmented by a finite stack in E2.

Transfer each stack in E2 to Xd .

Assemble the finite stacks in Xd into an infinite sequence of
successively osculating hyperplanes.

. . . we can find four suitable “reflex angles” in the interior component of the boundary of the square
path in E2.

This can always be done if the carrier of the circle in E2 is an annulus.
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Sufficient condition for a ray in X ˚
d of constant

curvature to be proper

Annulus Condition

Let γ : ra,8q Ñ X˚d “ Xd r VertpXd q (d ě 5) be a curve of constant
curvature κ ą 0. Let U be an unfolding of a locally monotone edgewise
square path Q in Xd for γ. Let ϕ : U Ñ E2 be a cellular local isometry.

If Imageϕ
homeo
« S1

ˆ I, then γ is a proper ray.
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Characterization of curves of constant
curvature κ ą 0

Small Block Condition

Let γ : ra,8q Ñ X˚d (d ě 5) be a curve of constant curvature κ ą 0.
Let U be an unfolding of a locally monotone edgewise square path Q in
Xd for γ. Let ϕ : U Ñ E2 be a cellular local isometry.

If Imageϕ
isom
– r´1, 1s ˆ r´1, 1s, then Image γ is either an embedded

circle, or a rose curve made up of M “ lcmt4, du arcs.

¨ ¨ ¨ ¨ ¨ ¨  
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