DRAFT

this pdf refers to an unpublished pre-print

Multivariate exploratory data analysis of kink role affinity scores

Dr. Julie C. La Corte
Georgia State University
First draft: Jul. 15, 2020
Last revised: Nov. 24, 2020

Overview

The dataset

Variables

- Each variable measures affinity for a different role
- Range of each variable: 0 to 100 points (given as percentage)
- 20 of the 25 variables are paired (e.g. Domi/Subm)

Agep	Ageplayer	Maso	Masochist
BBot	Bondage Bottom	MaMi	Master/Mistress
BTop	Bondage Top	NoMo	Non-Monogamist
BoGi	Boy/Girl	Ownr	Owner
Brat	Brat	Pet	Pet
BrTa	Brat Tamer	Prey	Prey (Primal)
DaMo	Daddy/Mommy	Sadi	Sadist
Dgee	Degradee	Slav	Slave
Dger	Degrader	Subm	Submissive
Domi	Dominant	Swit	Switch
Exhi	Exhibitionist	Vani	Vanilla
Expe	Experimentalist	Voye	Voyeur
Hunt	Hunter (Primal)		

Overview

Three stages

Preliminary stages

- Stage 1: One-variable EDA
- Classify distributions by shape
- Normalize each variable
- Stage 2: Two-variable EDA
- Test assumptions for classical linear regression
- Cluster variables by correlation

Overview

Three stages

Stage 3: Multivariate analysis (clustering)

- What's the "best" choice of algorithm parameters?
- How do we quantify a clustering's stability?
- How do we measure intracluster consistency?
- Characterize the clusters
- Are the clusters significantly statistically different?

Ultimate goal: Create a classification of individuals based on empirical data, not theoretical assumptions.

Stage 1: One-variable EDA

How do the univariate distributions compare?

Apples to apples...

- Do the distributions vary in shape, or just in location?
- Can we homogenize the distributions?

Stage 1: One-variable EDA

Classify distributions by shape

Center and spread

- Means, medians, and IQRs vary widely
- Standard deviations are all similar

score	Q_{1}	M	Q_{3}	\bar{x}	s
Ageplayer	.09	.26	.56	.34	.28
Bondage Bottom	.39	.74	.93	.64	.32
Bondage Top	.16	.51	.79	.49	.32
Boy/Girl	.11	.29	.60	.37	.30
Brat	.24	.47	.69	.47	.27
Brat Tamer	.09	.30	.58	.35	.28
Daddy/Mommy	.08	.23	.49	.31	.27
Degradee	.05	.27	.69	.37	.34
Degrader	.03	.16	.50	.29	.30
Dominant	.25	.57	.80	.52	.32
Exhibitionist	.15	.40	.70	.43	.30
Experimentalist	.46	.68	.83	.63	.25
Hunter	.07	.25	.59	.34	.30
Masochist	.23	.52	.76	.50	.30
Master/Mistress	.13	.35	.65	.40	.30
Non-Monogamist	.13	.36	.66	.40	.30
Owner	.04	.19	.49	.29	.29
Pet	.05	.14	.50	.29	.31
Prey	.12	.36	.65	.40	.30
Sadist	.10	.30	.62	.37	.30
Slave	.10	.31	.61	.37	.30
Submissive	.54	.79	.93	.69	.29
Switch	.31	.63	.87	.57	.32
Vanilla	.29	.49	.68	.49	.24
Voyeur	.16	.50	.78	.48	.32

Five-number summaries

Stage 1: One-variable EDA

Classify distributions by shape

Shape

- No normal curves
- Bounded domains
- Flat-tailed (Kurt < 3)
- One, two, or three peaks
- Some mildly random, some wildly random

Experimentalist

Hunter

Dominant

Exhibitionist

Degradee

Stage 1: One-variable EDA

Normalize each variable

Normalization

- No single family of standard parametric distributions describes all 25 variables
- So what transformation would make sense?
- z-scores? \mathbf{X}
- Log-transformation?
- Rank transformation?

Stage 1: One-variable EDA

Normalize each variable

Percentile rank transformation

The $q^{\text {th }}$ percentile ($0 \leq q \leq 1$) is the score below which (100q)\% of the data lies.

We'll call q the percentile rank.

Stage 1: One-variable EDA

Normalize each variable

After rank-transforming each variable...

- Comparisons between variables are more meaningful
- 2nd, 3rd, and 4th moments are approximately equal

Before
rank-transformation

score	Kurt	Skew
Submissive	2.87	-1.01
Bondage Bottom	2.08	-0.68
Experimentalist	2.45	-0.61
Switch	1.82	-0.39
Dominant	1.78	-0.22
Masochist	1.73	-0.10
Bondage Top	1.56	-0.07
Voyeur	1.57	-0.02
Vanilla	2.03	-0.02
Brat	1.89	-0.01
Exhibitionist	1.71	0.23
Prey	1.81	0.31
Non-Monogamist	1.80	0.32
Master/Mistress	1.89	0.37
Brat Tamer	1.97	0.46
Degradee	1.71	0.48
Slave	1.98	0.49
Sadist	1.90	0.49
Hunter	1.99	0.58
Boy/Girl	2.10	0.61
Ageplayer	2.14	0.62
Daddy/Mommy	2.52	0.80
Owner	2.49	0.86
Degrader	2.44	0.87
Pet	2.53	0.99

After
rank-transformation

rank	s	Kurt	Skew
Ageplayer	0.28	1.80	-0.01
Bondage Bottom	0.29	1.81	-0.03
Bondage Top	0.29	1.81	-0.02
Boy/Girl	0.29	1.79	-0.01
Brat	0.29	1.80	0
Brat Tamer	0.28	1.81	-0.02
Daddy/Mommy	0.28	1.79	-0.01
Degradee	0.28	1.79	-0.05
Degrader	0.28	1.78	-0.04
Dominant	0.29	1.80	-0.02
Exhibitionist	0.29	1.81	-0.01
Experimentalist	0.29	1.81	0.01
Hunter	0.28	1.80	-0.02
Masochist	0.29	1.81	0
Master/Mistress	0.29	1.81	-0.01
Non-Monogamist	0.29	1.80	-0.01
Owner	0.28	1.80	-0.05
Pet	0.28	1.76	-0.01
Prey	0.29	1.81	-0.01
Sadist	0.28	1.80	-0.02
Slave	0.28	1.81	-0.02
Submissive	0.30	1.80	-0.03
Switch	0.29	1.81	-0.02
Vanilla	0.29	1.80	0.01
Voyeur	0.29	1.80	-0.01

Stage 2: Two-variable EDA

Assumptions for linear regression

Why the assumptions matter:

- Linear correlation coefficients can't be trusted for nonlinear data

- Should we expect similar values of Pearson's r for the two density plots shown?

Stage 2: Two-variable EDA

Assumptions for linear regression

Why the assumptions matter:

- Linear correlation coefficients can't be trusted for nonlinear data
- Should we expect similar values of Pearson's r for the two hexbin plots shown?
- Would it help to transpose x and y ?

Stage 2: Two-variable EDA

Assumptions for linear regression

How the assumptions appeared to be violated:

- Most bivariate projections
were very nonlinear...

- ...and extreme
values tended to occur at very high frequencies

Stage 2: Two-variable EDA

Assumptions for linear regression

How the assumptions appeared to be violated:

- Large variation in y for fixed x

- Strong
heteroscedasticity

Stage 2: Two-variable EDA

Assumptions for linear regression

Formally checking the assumptions

- R function gvlma() tests assumptions for classical linear regression
© Every pair of variables (raw scores) failed (228 of 300 pairs failed 3 of 4 tests)

Figure 3: Tallied results of failed GVLMA tests for each pair of variables (clockwise from the top left of each grid: skewness, kurtosis, link function, and heteroscedasticity).

Stage 2: Two-variable EDA

Assumptions for linear regression

- 3D histograms for pairs (rank-transformed scores) that only failed one of gvlma()'s tests:

Stage 2: Two-variable EDA

Nonparametric correlation coefficients

Spearman's rank correlation coefficient ρ

- Measures ordinal, not linear association
- More resistant to outliers than Pearson's r (
- Does not handle ties well \boldsymbol{x}

Stage 2: Two-variable EDA

A nonparametric correlation coefficient

Kendall's rank correlation coefficient τ_{b}

- Measures ordinal, not linear association
- More resistant to outliers than Pearson's r (
- Corrects for ties

Sample size: 236,353
\# of possible values for each variable: 101

Stage 2: Two-variable EDA

Cluster the variables by correlation

A corrgram

 summarizes the correlation coefficients between the variables.
Stage 2: Two-variable EDA

Cluster the variables by correlation

Hierarchical

 clustering of the variables by τ_{b} :- D-types and Swit
- s-types
- non-D/s kink roles
- Vani

Stage 3: Multivariate analysis

Choosing the algorithm parameters

We now seek to classify individual survey responses.
We'll divide them up into groups of "similar" responses.

Each group of similar responses is called a cluster.

A division into groups is called a clustering.

The computational technique we'll use is called cluster analysis (specifically, agglomerative hierarchical cluster analysis).

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Parameters for hierarchical clustering

- dissimilarity metric $d:\{$ pairs of survey responses $\} \rightarrow[0, \infty)$
- number J of clusters
- linkage method ℓ

How do we pick d, J, and ℓ ?

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Replication technique

- Fix a choice of d, J, ℓ and subsample size n
- Draw K random subsamples of size n from the given sample
- Cluster each subsample
- Compare the clusterings of the K subsamples
- Are the characteristics of the clusters consistent across all K subsamples?
- Do the clusters tend to be meaningfully separated?

Stage 3: Multivariate analysis

Choosing the algorithm parameters

What we want from our clustering

- Some cluster should contain all respondents who have high-ranked Domi scores and low-ranked Subm scores
- Similarly for respondents who have high-ranked Subm scores and low-ranked Domi scores
- The median intracluster score in Domi should lie in a narrow range of values across all clusterings - Similarly for Subm and Swit

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

- For the $j^{\text {th }}$ cluster of the $k^{\text {th }}$ subsample, let

$$
M_{j, k}=\left(M_{j, k}^{(i)}\right)_{i=1}^{3} \quad(1 \leq j \leq J, 1 \leq k \leq K)
$$

be the triple of component-wise medians

$$
M_{j, k}^{(i)}=\operatorname{median}\left(x_{i} \mid C_{j, k}\right) \quad(1 \leq i \leq 3,1 \leq j \leq J, 1 \leq k \leq K)
$$

where

$$
x_{1}=(\text { Domi rank }), x_{2}=(\text { Swit rank }), \text { and } x_{3}=(\text { Subm rank })
$$

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

- Each clustering can thus be represented visually as a set of "summary points" in \mathbb{R}^{3}.
- The picture shows intracluster medians for 4 clusters.

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

- Each clustering can thus be represented visually as a set of "summary points" in \mathbb{R}^{3}.
- The picture shows intracluster medians for 4 clusters.
- The curved surface
 clarifies position in 3D.

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

- We can compare the clusterings of different subsamples (for a fixed choice of parameters) by plotting the surfaces together.

Did we choose our parameters for clustering well?

ranks $\mathrm{n}=10000$ numClusters=4 roles=Ds metric=manhattan linkage=ward. D2

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

- We can compare the clusterings of different subsamples (for a fixed choice of parameters) by plotting the surfaces together.

More stable, or less stable?

ranks $\mathrm{n}=10000$ numClusters=3 roles=Ds metric=manhattan linkage=ward.D2

Stage 3: Multivariate analysis

Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

- We can compare the clusterings of different subsamples (for a fixed choice of parameters) by plotting the surfaces together.

Better, or worse?

ranks $\mathrm{n}=10000$ numClusters=5 roles=Ds metric=manhattan linkage=ward.D2

Stage 3: Multivariate analysis

2 clusters
Domi

4 clusters

3 clusters

Swit

5 clusters

We chose

- $J=4$ clusters
- $d=\mathrm{L}_{1}$ metric
- $\ell=$ ward.D2

Stage 3: Multivariate analysis

Dimensional reduction

A cluster plot is

a low-dimensional representation of how much the clusters overlap or are separated.

- The axes are the first two principal components. Each axis accounts for some proportion of the variance in all variables.

Stage 3: Multivariate analysis

Correlation within each cluster

Intracluster correlation may be more meaningful than correlation across the entire sample.

Stage 3: Multivariate analysis

Correlation within each cluster

Figure 8: The relationship between Sadi and Maso ranks in each cluster. (Clockwise from top: polar dominant, polar submissive, non-polar kinky, non-polar vanilla.)

Stage 3: Multivariate analysis

Characterize the clusters

Clustering of survey respondents:

- polar dominant
- polar submissive
- non-polar kinky
- non-polar vanilla
median ranks for D-type roles

Stage 3: Multivariate analysis

Characterize the clusters

Clustering of survey respondents:

- polar dominant

> median ranks for s-type roles

- polar submissive
- non-polar kinky
- non-polar vanilla

Stage 3: Multivariate analysis

Characterize the clusters

Clustering of survey respondents:

- polar dominant
median ranks for non D/s-type kink roles
- polar submissive
- non-polar kinky
- non-polar vanilla

Stage 3: Multivariate analysis

-	polar dominant
∇	polar submissive
\star	non-polar kinky
\times	non-polar vanilla

Toward a conceptual model

What topological shape should our model have?

As a practical matter, we often do a kind of dimensional reduction in everyday life.

- discrete categories (0D)
- spectrum (1D)
- How many variables can you think about simultaneously varying without straining?

Toward a conceptual model

What topological shape should our model have?

Is it useful to conceive of "kinkiness" as one-dimensional?

Toward a conceptual model

What topological shape should our model have?

Maybe "kinkiness" is zero-dimensional?

Toward a conceptual model

What topological shape should our model have?

"Don't be silly—no one believes sexual diversity is one-dimensional or zero-dimensional."

Topologically equivalent to $\mathbb{S} 0=0$-dimensional sphere

androgyny
feminine

Toward a conceptual model

A two-dimensional model: $\mathbb{\square} \times \mathbb{\square}$

Toward a conceptual model

A two-dimensional model: $\mathbb{\square} \times \mathbb{\square}$

Summary of univariate and bivariate exploratory methodology

Summarize raw univariate distributions

- 5-number summary
- classify distributions by shape

Normalize univariate distributions

Characterize each cluster of variables

Summary of multivariate exploratory methodology

