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Overview
The dataset

Table 1: Variable names representing BDSM Test scores.

Agep Ageplayer Maso Masochist
BBot Bondage Bottom MaMi Master/Mistress
BTop Bondage Top NoMo Non-Monogamist
BoGi Boy/Girl Ownr Owner
Brat Brat Pet Pet
BrTa Brat Tamer Prey Prey (Primal)
DaMo Daddy/Mommy Sadi Sadist
Dgee Degradee Slav Slave
Dger Degrader Subm Submissive
Domi Dominant Swit Switch
Exhi Exhibitionist Vani Vanilla
Expe Experimentalist Voye Voyeur
Hunt Hunter (Primal)

respondent with a permanent link to a static webpage displaying their survey result, which
could be viewed without a login.

We did not retain any information through which the respondents could be re-identified.
Only a list of 25 role a�nity scores from 0% to 100% were retained for each survey
result.

Variables representing scores in the survey will be represented by italicized abbreviations
as in Table 1. We will adopt the non-standard convention of capitalizing the role corre-
sponding to each variable. (As can be seen in, for instance, Cross and Matheson 2006,
some kink practitioners capitalize dominant roles and not submissive roles.) When refer-
ring to role identities that di↵er in gender, but correspond to the same role in a particular
dynamic, we will always write both forms conjoined with a slash, e.g. Master/Mistress.
Since the current study did not record or consider any respondent’s declared gender, we
will consistently use they/them pronouns to refer to an indvidual respondent.

Terminology used in this paper

In what follows, we will often use the term “kink” where other authors might use the
terms SM, BDSM, or D/s.

We do this for two reasons. First, the term “kink” is the most general of the four
terms, as mentioned in the introduction to this paper. The phrase “kink community” is
used not only by those who practice power exchange, sadism, and masochism, but also,
for example, by people who role-play as much older or younger than their actual age
(“Ageplayers”) and certain sexual non-monogamists. In this paper, “kink” encompasses
all but one of the role a�nities (Vani) quantified by the BDSM Test survey. Second, the
word “kink” is less directly linked to pathology than the clinical term “sadomasochism”
(De Block and Adriaens 2013). Although some kink practitioners describe themselves as
sadomasochists, the word “kink”—like “queer”—evokes an ongoing process of cultural
reappropriation, not medicalization.

When interpreting the Vani score, the term “vanilla” cannot be understood in the sense
it is often used by kink practitioners, i.e. as describing a person who does not practice
kink (Weiss 2006). Many survey results simultaneously contained scores above 50% for
Vani and at least one variable quantifying an a�nity for a specific kink role. We do
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Variables

• Each variable measures affinity for a different role 

∘ Range of each variable: 0 to 100 points (given as percentage) 

∘ 20 of the 25 variables are paired (e.g. Domi/Subm)



Overview
Three stages

Preliminary stages

• Stage 1: One-variable EDA 

∘ Classify distributions by shape 

∘ Normalize each variable 

• Stage 2: Two-variable EDA 

∘ Test assumptions for classical linear regression 

∘ Cluster variables by correlation



Overview
Three stages

Stage 3: Multivariate analysis (clustering)

• What’s the “best” choice of algorithm parameters? 

∘ How do we quantify a clustering’s stability? 

∘ How do we measure intracluster consistency? 

• Characterize the clusters 

∘ Are the clusters significantly statistically different?

Ultimate goal: Create a classification of individuals 
based on empirical data, not theoretical assumptions.



How do the univariate distributions compare?

Stage 1: One-variable EDA

Apples to apples...

• Do the distributions vary in shape, or just in location? 

• Can we homogenize the distributions?



Classify distributions by shape

Stage 1: One-variable EDA

Center and spread
Table 2: Five-number summaries of role a�nity scores.

score Q1 M Q3 x̄ s
Ageplayer .09 .26 .56 .34 .28
Bondage Bottom .39 .74 .93 .64 .32
Bondage Top .16 .51 .79 .49 .32
Boy/Girl .11 .29 .60 .37 .30
Brat .24 .47 .69 .47 .27
Brat Tamer .09 .30 .58 .35 .28
Daddy/Mommy .08 .23 .49 .31 .27
Degradee .05 .27 .69 .37 .34
Degrader .03 .16 .50 .29 .30
Dominant .25 .57 .80 .52 .32
Exhibitionist .15 .40 .70 .43 .30
Experimentalist .46 .68 .83 .63 .25
Hunter .07 .25 .59 .34 .30
Masochist .23 .52 .76 .50 .30
Master/Mistress .13 .35 .65 .40 .30
Non-Monogamist .13 .36 .66 .40 .30
Owner .04 .19 .49 .29 .29
Pet .05 .14 .50 .29 .31
Prey .12 .36 .65 .40 .30
Sadist .10 .30 .62 .37 .30
Slave .10 .31 .61 .37 .30
Submissive .54 .79 .93 .69 .29
Switch .31 .63 .87 .57 .32
Vanilla .29 .49 .68 .49 .24
Voyeur .16 .50 .78 .48 .32

tersubjective relation (Lacan 1991), nor as two entirely irreconcilable paradigms (Deleuze
1989, Ch. 3). Rather, we sought to discover a purely empirical basis for the characteriza-
tion of the interrelationships between kink role identities through computational analysis
of numerical data.

Univariate analysis

Methods

The project began in an exploratory mode by characterizing the univariate distributions of
each role a�nity score. We wished to determine whether the distributions tended to di↵er
in shape, or only in location, and whether some family of mathematical transformations
would homogenize the shapes of the distributions prior to multivariate analysis.

To this end, we calculated the five-number summary of each role a�nity score and
heuristically classified the distributions of the 25 scores by shape.

Results

Table 2 gives the first quartile Q1, median M , third quartile Q3, mean x̄, and standard
deviation s for each of the 25 variables in the full sample (n = 236, 353).

We found that the variables’ distributions were too diverse in shape to be approximated
by a single standard parametric distribution. However, replacing each raw score with
its percentile rank q 2 [0, 1]—that is, the percentage of survey results with a lower
raw score—all but eliminated the variation in sample standard deviation, kurtosis, and
skewness (Table 3).

We now describe the raw scores’ distributions and classify them by shape. The histograms
for each score are provided in Figure 1. No raw score except Vani had a histogram that
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• Means, medians, and 
IQRs vary widely 

• Standard deviations are 
all similar

Five-number summaries



Classify distributions by shape

Stage 1: One-variable EDA

Shape

• No normal curves 

∘ Bounded domains 

∘ Flat-tailed (Kurt < 3) 

∘ One, two, or three 
peaks 

• Some mildly random, 
some wildly random
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Normalize each variable

Stage 1: One-variable EDA

Normalization

• No single family of standard parametric distributions 
describes all 25 variables 

• So what transformation would make sense? 

∘ z-scores? 

∘ Log-transformation? 

∘ Rank transformation?



Normalize each variable

Stage 1: One-variable EDA

Percentile rank transformation

The q th percentile 
(0≤q≤1) is the score 
below which (100q)% of 
the data lies.

We’ll call q the 
percentile rank.



Normalize each variable

Stage 1: One-variable EDA

After rank-transforming each variable…

Table 3: Kurtosis and skewness of role a�nity scores (left) and standard deviation,
kurtosis, and skewness of rank-transformed scores (right).

score Kurt Skew
Submissive 2.87 -1.01
Bondage Bottom 2.08 -0.68
Experimentalist 2.45 -0.61
Switch 1.82 -0.39
Dominant 1.78 -0.22
Masochist 1.73 -0.10
Bondage Top 1.56 -0.07
Voyeur 1.57 -0.02
Vanilla 2.03 -0.02
Brat 1.89 -0.01
Exhibitionist 1.71 0.23
Prey 1.81 0.31
Non-Monogamist 1.80 0.32
Master/Mistress 1.89 0.37
Brat Tamer 1.97 0.46
Degradee 1.71 0.48
Slave 1.98 0.49
Sadist 1.90 0.49
Hunter 1.99 0.58
Boy/Girl 2.10 0.61
Ageplayer 2.14 0.62
Daddy/Mommy 2.52 0.80
Owner 2.49 0.86
Degrader 2.44 0.87
Pet 2.53 0.99

rank s Kurt Skew
Ageplayer 0.28 1.80 -0.01
Bondage Bottom 0.29 1.81 -0.03
Bondage Top 0.29 1.81 -0.02
Boy/Girl 0.29 1.79 -0.01
Brat 0.29 1.80 0
Brat Tamer 0.28 1.81 -0.02
Daddy/Mommy 0.28 1.79 -0.01
Degradee 0.28 1.79 -0.05
Degrader 0.28 1.78 -0.04
Dominant 0.29 1.80 -0.02
Exhibitionist 0.29 1.81 -0.01
Experimentalist 0.29 1.81 0.01
Hunter 0.28 1.80 -0.02
Masochist 0.29 1.81 0
Master/Mistress 0.29 1.81 -0.01
Non-Monogamist 0.29 1.80 -0.01
Owner 0.28 1.80 -0.05
Pet 0.28 1.76 -0.01
Prey 0.29 1.81 -0.01
Sadist 0.28 1.80 -0.02
Slave 0.28 1.81 -0.02
Submissive 0.30 1.80 -0.03
Switch 0.29 1.81 -0.02
Vanilla 0.29 1.80 0.01
Voyeur 0.29 1.80 -0.01

approximated the characteristic bell shape of a normal distribution. All other a�nity
scores were pronouncedly skewed (that is, | Skew | > .6), flat-tailed (Kurt < 2, i.e. sig-
nificant negative excess kurtosis), or both (Table 3). Most histograms had sharp peaks
near 0 = 0% or near 1 = 100%, the endpoints of the variables’ range. Relatively few had
sharp peaks at both endpoints. In the approximate midrange, by which we mean scores
between .2 and .8, the histograms tended to plateau.

These observations suggested a classification based on the degree of randomness and the
number and shape of the peaks. Since taller plateaus in the histogram indicate higher
degrees of randomness, distributions were classified as mildly random or wildly random
based on the thickness of the midranges of their histograms. Distributions with two
pronounced peaks were called strongly bimodal. If a distribution had two peaks, but
only one was visually significant, we called it weakly bimodal. Our classification was
heuristic, not formal. For example, we grouped Brat alongside Vani because the sample
means, standard deviations, kurtosis, and skewness were approximately equal for the two
variables’ raw scores, but we did not uniformly apply this criterion to all variables.

Analysis

We will make only a few sparing remarks about the univariate data. The goal of this study
is not to interpret the sample means and midspreads of individual scores, but rather to
provide quantitative evidence of the interrelationships between the roles that the scores
represent.

Among those who completed the survey, highly submissive respondents appear to have
outnumbered highly dominant respondents. For all but two of the standard D/s dynamics
referenced in the survey, this trend held: the median role a�nity score was about 20%
to 45% lower for the D-type role than it was for the complementary s-type role. For
the two exceptions, MaMi ⇠ Slav and Ownr ⇠ Pet, the median and mean scores for
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• Comparisons between variables are more meaningful 

• 2nd, 3rd, and 4th moments are approximately equal

Before 
rank-transformation

After 
rank-transformation



Assumptions for linear regression

Stage 2: Two-variable EDA

Why the assumptions matter:
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• Linear correlation coefficients 
can’t be trusted for nonlinear 
data 

∘ Should we expect similar 
values of Pearson’s r for the 
two density plots shown?



Assumptions for linear regression

Stage 2: Two-variable EDA

Why the assumptions matter:
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• Linear correlation coefficients 
can’t be trusted for nonlinear 
data 

∘ Should we expect similar 
values of Pearson’s r for the 
two hexbin plots shown? 

∘ Would it help to transpose 
x and y?



• …and extreme 
values tended to 
occur at very 
high frequencies

Assumptions for linear regression

Stage 2: Two-variable EDA

How the assumptions appeared to be violated:

• Most bivariate 
projections 
were very 
nonlinear…
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Assumptions for linear regression

Stage 2: Two-variable EDA

How the assumptions appeared to be violated:

• Large variation in y for 
fixed x 

Maso 
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• Strong 
heteroscedasticity
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Assumptions for linear regression

Stage 2: Two-variable EDA

Formally checking the assumptions

Figure 3: Tallied results of failed GVLMA tests for each pair of variables (clockwise from
the top left of each grid: skewness, kurtosis, link function, and heteroscedas-
ticity).

was r = .93. Similarly, the strongest negative correlation we found using Kendall’s or
Pearson’s coe�cient was ⌧b = �.63 and r = �.82 for Domi ⇠ Subm.)

Agglomerative hierarchical clustering of the variables by rank correlation coe�cients
yielded four clusters (see Figure 5). One contained all D-type variables (Domi, BTop,
BrTa, DaMo, Dger, Hunt, MaMi, Ownr, Sadi) and Swit. A second contained all s-type
variables (Subm, BBot, Brat, BoGi, Dgee, Prey, Slav, Pet, Maso). A third consisted of
Vani alone. The remaining variables, which we will call non-D/s kink variables, com-
prised the fourth cluster (Agep, Exhi, Expe, NoMo, Voye). Table 4 gives the range of
correlation coe�cients for each cluster of variables.

Although we will not further discuss most of the statistics in the bulleted list to follow,
we provide them as evidence for the claim that the dataset exhibits such a high degree
of statistical diversity that every variable possesses some distinguishing property.

• The median raw score was lowest for Pet (M = 0.14) and highest for Subm
(M = 0.79).

• Dgee scores had the largest standard deviation (s = 0.34), and Vani (s = 0.24)
and Expe (s = 0.25) had the smallest. BTop exhibited the largest excess negative
kurtosis (Kurt� 3 = �1.44).

• Unlike every other variable, scatterplots of other D/s variables against x = Swit
tended to bifurcate, making linear regression highly unreliable as a predictive model.
For example, although the bivariate distributions for Domi ⇠ Swit and Subm ⇠
Swit were similar in shape (Figure 4), Pearson’s r was radically di↵erent in the two
cases (r = .48 and r = .09, respectively).

• The correlation between Domi and Subm was more strongly negative (⌧b = �0.63)
than for any other pair of roles.

• For specific play dynamics (that is, excluding the generic pair Domi and Subm),
the strongest negative correlation between a D-type role and the complementary
s-type role was between BrTa and Brat (⌧b = �0.23)

Table 4: Ranges of correlation coe�cients ⌧b for each pair of clusters of variables.

D-types and Swit s-type roles Vani non-D/s kink
D-types and Swit .26 to .80 -.63 to .11 -.15 to .15 .04 to .36

s-type roles .29 to .65 - 36 to -.08 -.16 to .51
Vani -.33 to -.09
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• R function gvlma() tests assumptions for classical linear 
regression 

∘ Every pair of variables (raw scores) failed (228 of 300 
pairs failed 3 of 4 tests)



Assumptions for linear regression

Stage 2: Two-variable EDA

�������

• 3D histograms for pairs (rank-transformed scores) 
that only failed one of gvlma()’s tests:



• Measures ordinal, not linear association 

• More resistant to outliers than Pearson’s r 

• Does not handle ties well

Nonparametric correlation coefficients

Stage 2: Two-variable EDA

Spearman’s rank correlation coefficient 𝝆

Image source: Wikipedia



• Measures ordinal, not linear association 

• More resistant to outliers than Pearson’s r 

• Corrects for ties

A nonparametric correlation coefficient

Stage 2: Two-variable EDA

Kendall’s rank correlation coefficient 𝜏b

Sample size: 236,353 

# of possible values for each variable: 101 

⇓ 

lots of ties!



Stage 2: Two-variable EDA
Cluster the variables by correlation

A corrgram 
summarizes the 
correlation 
coefficients 
between the 
variables.



Stage 2: Two-variable EDA
Cluster the variables by correlation

Hierarchical 
clustering of the 
variables by 𝜏b: 
• D-types and Swit 

• s-types 

• non-D/s kink 
roles 

• Vani



Stage 3: Multivariate analysis
Choosing the algorithm parameters

We now seek to classify individual survey responses. 

We’ll divide them up into groups of “similar” responses. 

Each group of similar responses is called a cluster. 

A division into groups is called a clustering. 

The computational technique we’ll use is called cluster 
analysis (specifically, agglomerative hierarchical cluster analysis).



Stage 3: Multivariate analysis
Choosing the algorithm parameters

Parameters for hierarchical clustering

• dissimilarity metric d: {pairs of survey responses} → [0,∞) 

• number J of clusters 

• linkage methodℓ

How do we pick d, J, and ℓ?



Stage 3: Multivariate analysis
Choosing the algorithm parameters

Replication technique

• Fix a choice of d, J, ℓ and subsample size n 
• Draw K random subsamples of size n from the given 

sample 

• Cluster each subsample 

• Compare the clusterings of the K subsamples 

∘ Are the characteristics of the clusters consistent 
across all K subsamples? 

∘ Do the clusters tend to be meaningfully separated?



Stage 3: Multivariate analysis
Choosing the algorithm parameters

What we want from our clustering

• Some cluster should contain all respondents who have 
high-ranked Domi scores and low-ranked Subm scores 

∘ Similarly for respondents who have high-ranked 
Subm scores and low-ranked Domi scores 

• The median intracluster score in Domi should lie in a 
narrow range of values across all clusterings 

∘ Similarly for Subm and Swit



• For the j th cluster of the k th subsample, let 

be the triple of component-wise medians 

where 

Stage 3: Multivariate analysis
Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

n 2 {100, 200, 500, 1000}. (Note that larger sample sizes tend to inflate AC, Kaufman
and Rousseeuw 1990, p. 212.) Bearing in mind the known issues of single linkage and
complete linkage—the chaining e↵ect and sensitivity to outliers, respectively (Manning
et al. 2008)—we chose Ward’s method for the remainder of our analyses.

To choose the metric d and the number J of clusters, a variety of techniques were tried,
including the elbow, silhouette, and gap statistic methods as implemented in R. We also
tried Mathematica’s algorithm for automatically determining an optimal choice of d

and/or J . None of these procedures yielded consistent results across di↵erent randomly
selected subsamples of the same size.

We decided instead upon the following replication technique (cf. Aldenderfer and Blash-
field 1984) for choosing d and J . We fixed the subsample size at n = 10, 000 and
clustered each of K = 100 randomly selected subsamples under each of four metrics
(L1, L2, L1, and Canberra) into J 2 {2, 3, 4, 5, 6} clusters. For each fixed choice of
d and J , we summarized the clustering of each of the K subsamples by a set of three
points in 3-dimensional Euclidean space that represented the clusters with the highest
aggregate Domi, Swit, and Subm scores, respectively. (A precise definition of the three
summary points will be given in the next paragraph.) If the summary points for all sub-
samples were closely packed into min{J, 3} groups for a fixed choice of d and J , we
considered the choice of d and J to be stable—the more closely packed the groups of
summary points, the more stable.

The technical details omitted in the previous paragraph are as follows. For each fixed
choice of metric d and the number J of clusters, we computed the component-wise
medians for x1 = (Domi rank), x2 = (Swit rank), and x3 = (Subm rank) within each
cluster in each subsample, and plotted all triples of median ranks

Mj,k =
�
M

(i)
j,k

�3
i=1

(1  j  J, 1  k  K)

in 3-dimensional Euclidean space, where

M
(i)
j,k = median

�
xi |Cj,k

�
(1  i  3, 1  j  J, 1  k  K)

is the median of xi within the jth cluster Cj,k of the kth subsample. We visually inspected
the resulting 3D scatterplot to determine which choice of metric and number of clusters
resulted in the most closely packed groups of median rank triples. Closely packed groups
of triples indicate stable results for a fixed choice of d and J in so far as they show that
the algorithm is consistently extracting clusters that have similar median ranks in Domi,
Swit, and Subm. We quantified the spread of the triples by calculating the diameter of
the set of all triples with maximal median rank in Domi when compared to the other
clusters of that subsample, and similarly for Swit and Subm.

Although the Canberra metric performed more consistently for 2  J  6 than the other
three metrics tried, we chose the L1 metric for the following reasons. The L1 metric
with J = 4 produced the most closely packed median rank triples out of all choices of
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considered the choice of d and J to be stable—the more closely packed the groups of
summary points, the more stable.

The technical details omitted in the previous paragraph are as follows. For each fixed
choice of metric d and the number J of clusters, we computed the component-wise
medians for x1 = (Domi rank), x2 = (Swit rank), and x3 = (Subm rank) within each
cluster in each subsample, and plotted all triples of median ranks

Mj,k =
�
M

(i)
j,k

�3
i=1

(1  j  J, 1  k  K)

in 3-dimensional Euclidean space, where

M
(i)
j,k = median

�
xi |Cj,k

�
(1  i  3, 1  j  J, 1  k  K)

is the median of xi within the jth cluster Cj,k of the kth subsample. We visually inspected
the resulting 3D scatterplot to determine which choice of metric and number of clusters
resulted in the most closely packed groups of median rank triples. Closely packed groups
of triples indicate stable results for a fixed choice of d and J in so far as they show that
the algorithm is consistently extracting clusters that have similar median ranks in Domi,
Swit, and Subm. We quantified the spread of the triples by calculating the diameter of
the set of all triples with maximal median rank in Domi when compared to the other
clusters of that subsample, and similarly for Swit and Subm.

Although the Canberra metric performed more consistently for 2  J  6 than the other
three metrics tried, we chose the L1 metric for the following reasons. The L1 metric
with J = 4 produced the most closely packed median rank triples out of all choices of
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Stage 3: Multivariate analysis
Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

• Each clustering can thus 
be represented visually as 
a set of “summary points” 
in ℝ3. 

∘ The picture shows 
intracluster medians for 
4 clusters. 

∘ The curved surface 
clarifies position in 3D.
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Stage 3: Multivariate analysis
Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

• We can compare the 
clusterings of different 
subsamples (for a fixed 
choice of parameters) by 
plotting the surfaces 
together.

Did we choose our 
parameters for clustering 
well?



Stage 3: Multivariate analysis
Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

More stable, or less stable?

• We can compare the 
clusterings of different 
subsamples (for a fixed 
choice of parameters) by 
plotting the surfaces 
together.



Stage 3: Multivariate analysis
Choosing the algorithm parameters

Visualizing a clustering in terms of our objectives

Better, or worse?

• We can compare the 
clusterings of different 
subsamples (for a fixed 
choice of parameters) by 
plotting the surfaces 
together.



Stage 3: Multivariate analysis

Figure 6: Triples of component-wise median ranks in Domi, Swit, and Subm for
J 2 {2, 3, 4, 5} clusters in K = 100 subsamples. An approximately inter-
polating surface is included in each plot to clarify the triples’ positions in 3D.
The shapes indicate which of the three variables Domi (upward-pointing tri-
angle), Subm (downward-pointing triangle), or Swit (star) was greatest when
compared to median triples of the other clusters in the same subsample. Stars
were omitted from the plot for J = 2 clusters. Crosses represent clusters that
did not maximize any of the three variables.

2 clusters 3 clusters

4 clusters 5 clusters

23

•  J = 4 clusters 

•  d = L1 metric 

• ℓ = ward.D2

We chose



Stage 3: Multivariate analysis
Dimensional reduction

A cluster plot is 
a low-dimensional 
representation of 
how much the 
clusters overlap or 
are separated.

• The axes are the first 
two principal 
components. Each 
axis accounts for some 
proportion of the 
variance in all variables.



Stage 3: Multivariate analysis
Correlation within each cluster

Swit score
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Intracluster correlation may be more meaningful than 
correlation across the entire sample.



Stage 3: Multivariate analysis
Correlation within each cluster

Figure 8: The relationship between Sadi and Maso ranks in each cluster. (Clock-
wise from top: polar dominant, polar submissive, non-polar kinky, non-polar
vanilla.)
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to include individuals who had relatively high scores in all 25 variables.

Within each class of kink variables—that is, D-type, s-type, and non-D/s—we see that
the polar clusters had more extreme values for the generic Domi and Subm variables than
for any specific D-type or s-type variable. Across all four clusters, median ranks tended
to be higher for D-type variables than for s-type variables; this is interesting because
the median scores and ranks for s-type variables tended to be higher than for D-type
variables in the full sample. The highest median ranks ”against type” were in Dger and
Sadi for polar submissives (� 20th percentile), which suggests that a significant number
of submissives who typically would not switch nonetheless possess at least some mild
degree of a�nity for taking the active role in humiliation play or pain play. Finally, we
note that, while the polar clusters both had median ranks near the 50th percentile in
three of the non-D/s kink variables (Agep, NoMo, and Exhi), polar dominants had a
much higher median rank in Voye (65th percentile) than did polar submissives (34th
percentile).

Analysis

When classifying kink practitioners, two categories is not enough. Using four categories
improved the internal consistency of each category and provided greater granularity than
a simple dichotomy.
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Stage 3: Multivariate analysis
Characterize the clusters

Clustering of survey respondents: 
• polar dominant 

• polar submissive 

• non-polar kinky 

• non-polar vanilla
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Stage 3: Multivariate analysis
Characterize the clusters

Clustering of survey respondents: 
• polar dominant 

• polar submissive 

• non-polar kinky 

• non-polar vanilla



Stage 3: Multivariate analysis
Figure 9: Median ranks of variables within each cluster.
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▲ polar dominant
▼ polar submissive
★ non-polar kinky
× non-polar vanilla

A single axis is also insu�cient for conceptualizing the diversity of kink practices. In par-
ticular, when we arrange kink practices along a one-dimensional spectrum from dominant
to submissive or from sadomasochistic to normative, we ignore factors which explain sig-
nificant behavioral di↵erences—factors which include role fluidity (e.g. the Swit variable,
which had medians of M = .82 in the non-polar kinky cluster, M = .37 in the polar dom-
inant cluster, and M = .25 in the polar submissive cluster), a�nities for non-normative
sexual practices (e.g., Expe, which had medians M = .77, M = .53, M = .43, and
M = .34 in the non-polar kinky, polar dominant, polar submissive, and non-polar vanilla
clusters, respectively), and a�nities for traditional sexual interactions and romantic re-
lationships (e.g., Vani, which had median M = .76 in the non-polar vanilla cluster and
medians from M = .36 to M = .40 in the other three clusters).

We propose that a model for understanding kink roles and identities should at minimum
account for an individual’s dominant/submissive polarization, as opposed to their D/s
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What topological shape should our model have?

As a practical matter, we 
often do a kind of 
dimensional reduction in 
everyday life. 

Ageplayer
Bondage Bottom

Bondage Top
Boy/Girl

Brat
Brat Tamer

Daddy/Mommy
Degradee
Degrader
Dominant

Exhibitionist
Experimentalist

Hunter
Masochist

Master/Mistress
Non-Monogamist

Owner
Pet

Prey
Sadist
Slave

Submissive
Switch
Vanilla
Voyeur

0.00 0.25 0.50 0.75 1.00

Median (full sample)

• discrete categories (0D) 

• spectrum (1D) 

• How many variables can 
you think about 
simultaneously varying 
without straining?

Toward a conceptual model



normophilic 
“vanilla”

paraphilic 
“sadomasochist”

What topological shape should our model have?

Toward a conceptual model

Is it useful to conceive of “kinkiness” as one-dimensional?

dominant submissive

…or 
maybe…



normophilic paraphilic

What topological shape should our model have?

Maybe “kinkiness” is zero-dimensional?

Toward a conceptual model



What topological shape should our model have?

“Don’t be silly—no one believes sexual diversity is 
one-dimensional or zero-dimensional.”

female male

feminine masculine
androgyny

Topologically equivalent to 𝕊0 = 0-dimensional sphere

Topologically equivalent to 𝕀1 = 1-dimensional cell

Toward a conceptual model



polar 
dominant

polar 
submissive

zero affinity for kink roles

total of kink role affinities

Toward a conceptual model
A two-dimensional model: 𝕀×𝕀



A two-dimensional model: 𝕀×𝕀

D ⋀ ∼s ∼D ⋀ s

∼D ⋀ ∼s

D ⋀ s

I

II

III

IV

x = points above 
median Subm score

y = points above 
median Domi score

D: respondent scored above median in Domi 

 s: respondent scored above median in Subm

Toward a conceptual model



Summary of univariate and bivariate exploratory methodology

Summarize raw univariate distributions 
• 5-number summary 
• classify distributions by shape

Normalize univariate distributions

Dominant
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Bivariate 
correlations

Clustering 
of variables

Characterize 
each cluster 
of variables



Identify “objective variables” with respect to which we 
would like the clustering of individuals to be stable

Draw a large subsample, cluster it, 
and characterize each cluster

Summary of multivariate exploratory methodology
Summarize raw univariate distributions 

• 5-number summary 
• classify distributions by shape

Normalize univariate distributions

For each of K subsamples: 
• cluster the subsample into J clusters 
• compute intracluster median ranks for all objective variables

Assess stability of clustering parameters by considering 
median rank tuples Mj,k across all K subsamples 

• e.g. for each objective variable xi, compute diameter of set of tuples 
ME(i,k),k where E(i,k) is the cluster such that proji(Me(i,k),k) ≥ proji(Mj,k) 
for each of the j≤J clusters of the k th subsample

Fix a choice of clustering parameters

if not 
stable, 

pick new 
parameters

if 
stable, 
proceed

Dominant

0.0 0.2 0.4 0.6 0.8 1.0

0
15
00
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Figure 6: Triples of component-wise median ranks in Domi, Swit, and Subm for
J 2 {2, 3, 4, 5} clusters in K = 100 subsamples. An approximately inter-
polating surface is included in each plot to clarify the triples’ positions in 3D.
The shapes indicate which of the three variables Domi (upward-pointing tri-
angle), Subm (downward-pointing triangle), or Swit (star) was greatest when
compared to median triples of the other clusters in the same subsample. Stars
were omitted from the plot for J = 2 clusters. Crosses represent clusters that
did not maximize any of the three variables.

2 clusters 3 clusters

4 clusters 5 clusters
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Figure 8: The relationship between Sadi and Maso ranks in each cluster. (Clock-
wise from top: polar dominant, polar submissive, non-polar kinky, non-polar
vanilla.)
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to include individuals who had relatively high scores in all 25 variables.

Within each class of kink variables—that is, D-type, s-type, and non-D/s—we see that
the polar clusters had more extreme values for the generic Domi and Subm variables than
for any specific D-type or s-type variable. Across all four clusters, median ranks tended
to be higher for D-type variables than for s-type variables; this is interesting because
the median scores and ranks for s-type variables tended to be higher than for D-type
variables in the full sample. The highest median ranks ”against type” were in Dger and
Sadi for polar submissives (� 20th percentile), which suggests that a significant number
of submissives who typically would not switch nonetheless possess at least some mild
degree of a�nity for taking the active role in humiliation play or pain play. Finally, we
note that, while the polar clusters both had median ranks near the 50th percentile in
three of the non-D/s kink variables (Agep, NoMo, and Exhi), polar dominants had a
much higher median rank in Voye (65th percentile) than did polar submissives (34th
percentile).

Analysis

When classifying kink practitioners, two categories is not enough. Using four categories
improved the internal consistency of each category and provided greater granularity than
a simple dichotomy.
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Figure 9: Median ranks of variables within each cluster.
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A single axis is also insu�cient for conceptualizing the diversity of kink practices. In par-
ticular, when we arrange kink practices along a one-dimensional spectrum from dominant
to submissive or from sadomasochistic to normative, we ignore factors which explain sig-
nificant behavioral di↵erences—factors which include role fluidity (e.g. the Swit variable,
which had medians of M = .82 in the non-polar kinky cluster, M = .37 in the polar dom-
inant cluster, and M = .25 in the polar submissive cluster), a�nities for non-normative
sexual practices (e.g., Expe, which had medians M = .77, M = .53, M = .43, and
M = .34 in the non-polar kinky, polar dominant, polar submissive, and non-polar vanilla
clusters, respectively), and a�nities for traditional sexual interactions and romantic re-
lationships (e.g., Vani, which had median M = .76 in the non-polar vanilla cluster and
medians from M = .36 to M = .40 in the other three clusters).

We propose that a model for understanding kink roles and identities should at minimum
account for an individual’s dominant/submissive polarization, as opposed to their D/s
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