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Thought experiment:
The curvature of the Earth’s surface at a point

Imagine a person standing on the Earth’s surface and firing a
magic bullet that is not affected by gravity.
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Thought experiment:
The curvature of the Earth’s surface at a point

Imagine a person standing on the Earth’s surface and firing a
magic bullet that is not affected by gravity.

The Earth’s surface curves away from the bullet’s trajectory.
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Thought experiment:
The curvature of the Earth’s surface at a point

Imagine a person standing on the Earth’s surface and firing a
magic bullet that is not affected by gravity.

The Earth’s surface curves away from the bullet’s trajectory,
no matter what direction the shooter faces.



Curvature
without
calculus

Julie Carmela
La Corte

Motivation:
Classical
curvature
Normal curvature

Comparison
geometry
Metric spaces

Geodesic spaces

Nonpositive
curvature

Application:
Reconfig-
urable
systems

Thought experiment:
The curvature of the Earth’s surface at a point

Imagine a person standing on the Earth’s surface and firing a
magic bullet that is not affected by gravity.

The Earth’s surface curves away from the bullet’s trajectory,
no matter what direction the shooter faces, and no matter where
she stands.
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Thought experiment:
The curvature of the torus at a point

The situation would be different if the surface of our planet was
shaped like a torus.
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Thought experiment:
The curvature of the torus at a point

The situation would be different if the surface of our planet was
shaped like a torus.

A shooter standing at certain points of the torus would observe
Earth-like curvature.
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Thought experiment:
The curvature of the torus at a point

The situation would be different if the surface of our planet was
shaped like a torus.

But at a point on the inner rim of the torus, the shooter would see
the torus curving away from the bullet’s trajectory in some
directions, and toward it in other directions.
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Normal vector to a surface

A neighborhood of a point p on the inner rim of the torus
resembles the saddle surface.
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Normal vector to a surface

A neighborhood of a point p on the inner rim of the torus
resembles the saddle surface.

Let’s draw a plane tangent to this surface at p.
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Normal vector to a surface

A neighborhood of a point p on the inner rim of the torus
resembles the saddle surface.

Let’s draw a plane tangent to this surface at p.

Label one of the directions perpendicular to the tangent plane as
n. This direction will be called “up.”
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Negative curvature at a point on a surface

For certain initial directions t, curves along the saddle surface that
start at p bend “up,” toward n.
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Negative curvature at a point on a surface

For certain initial directions t, curves along the saddle surface that
start at p bend “up,” toward n.

For other choices of t, they bend “down,” away from n.

We say that such a point p is hyperbolic, and that the surface is
negatively curved at p.
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Negative curvature at a point on a surface

For certain initial directions t, curves along the saddle surface that
start at p bend “up,” toward n.

For other choices of t, they bend “down,” away from n.

We say that such a point p is hyperbolic, and that the surface is
negatively curved at p.
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Positive curvature at a point on a surface

A surface is positively curved at a point p, and p is an elliptic
point, if:

for any choice of initial direction t, all curves along the
surface starting at p bend toward n, or all bend away from n.
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Normal curvature

In calculus, we learn that the normal curvature

κ = κ(t)

measures how quickly a surface appears to bend in a given
direction t when standing at a point p on the surface.
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Normal curvature

In calculus, we learn that the normal curvature

κ = κ(t)

measures how quickly a surface appears to bend in a given
direction t when standing at a point p on the surface.

If κ > 0, the surface bends in the direction of n.

If κ < 0, the surface bends in the opposite direction.

κ(t) > 0 κ(t) < 0
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Normal curvature

Computing the normal curvature κ isn’t hard, but it can be
tedious. . .

Write t =
[

du
dv

]
. Then

κ
([

du
dv

])
= −

(
∂x
∂u ·

∂n
∂u

)
du2 +

(
∂x
∂u ·

∂n
∂v + ∂x

∂v ·
∂n
∂u

)
du dv +

(
∂x
∂v ·

∂n
∂v

)
dv2(

∂x
∂u ·

∂x
∂u

)
du2 + 2

(
∂x
∂u ·

∂x
∂v

)
du dv +

(
∂x
∂v ·

∂x
∂v

)
dv2

,

where

n = n(u, v) =
∂x
∂u × ∂x

∂v∣∣ ∂x
∂u × ∂x

∂v

∣∣ .
+ Moral: Calculus provides effective tools for describing the
curvature of a surface, but requires lots of calculation.
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Curvature in n-dimensional spaces (n ≥ 3)

It makes sense to speak of the curvature of higher-dimensional
geometric figures, too, although the mathematics is much more
difficult.
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Curvature in n-dimensional spaces (n ≥ 3)

It makes sense to speak of the curvature of higher-dimensional
geometric figures, too.

+ To a topologist, the sphere, the torus, and the saddle surface
are 2-dimensional spaces.

Image from E.A. Abbott, Flatland: A Romance of Many Dimensions (1884)
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Curvature in n-dimensional spaces (n ≥ 3)

It makes sense to speak of the curvature of higher-dimensional
geometric figures, too.

+ To a topologist, the sphere, the torus, and the saddle surface
are 2-dimensional spaces.
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Curvature in n-dimensional spaces (n ≥ 3)

It makes sense to speak of the curvature of higher-dimensional
geometric figures, too.

The theory of general relativity tells us that our universe, which
we experience as being 3-dimensional, is “curved” in the vicinity
of massive objects.

The curvature of n-dimensional shapes for n ≥ 3 is studied in the
branch of mathematics known as differential geometry.

Image from Science News, May 16, 2014, http://www.sciencenews.org/article/mysterious-boundary
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Curvature in n-dimensional spaces (n ≥ 3)

It makes sense to speak of the curvature of higher-dimensional
geometric figures, too.

The theory of general relativity tells us that our universe, which
we experience as being 3-dimensional, is “curved” in the vicinity
of massive objects.

The curvature of n-dimensional spaces for n ≥ 3 is studied in the
branch of mathematics known as differential geometry.

+ As we look at spaces of higher and higher dimension, we
need more and more calculations to characterize their curvature.
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Why comparison geometry?

Comparison geometry is an alternative method for describing
the curvature of a space.

It’s simple:
No calculus (or differential geometry) is required.

It scales well:
Exactly the same amount of work is required to describe the
curvature of a space of any dimension.

It’s purely geometric:
Comparison geometry is based on triangles and distances.

Minimal prerequisites:
Just 4 axioms are required to do comparison geometry.
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Why comparison geometry?

Comparison geometry is an alternative method for describing
the curvature of a space.

It’s simple:
No calculus (or differential geometry) is required.

It scales well:
Exactly the same amount of work is required to describe the
curvature of a space of any dimension.

It’s purely geometric:
Comparison geometry is based on triangles and distances.

Minimal prerequisites:
Just 4 axioms are required to do comparison geometry.
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Why comparison geometry?

Comparison geometry is an alternative method for describing
the curvature of a space.

It’s simple:
No calculus (or differential geometry) is required.

It scales well:
Exactly the same amount of work is required to describe the
curvature of a space of any dimension.

It’s purely geometric:
Comparison geometry is based on triangles and distances.

Minimal prerequisites:
Just 4 axioms are required to do comparison geometry.
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Why comparison geometry?

Comparison geometry is an alternative method for describing
the curvature of a space.

It’s simple:
No calculus (or differential geometry) is required.

It scales well:
Exactly the same amount of work is required to describe the
curvature of a space of any dimension.

It’s purely geometric:
Comparison geometry is based on triangles and distances.

Minimal prerequisites:
Just 4 axioms are required to do comparison geometry.
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Why comparison geometry?

Comparison geometry is an alternative method for describing
the curvature of a space.

It’s simple:
No calculus (or differential geometry) is required.

It scales well:
Exactly the same amount of work is required to describe the
curvature of a space of any dimension.

It’s purely geometric:
Comparison geometry is based on triangles and distances.

Minimal prerequisites:
Just 4 axioms are required to do comparison geometry.
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Metric spaces

The first three axioms define distance.

Given any geometric figure (any set, even), we can define
what the distance between two points is.

A distance function on a set X is a function d : X × X → [0,∞)
satisfying the following axioms.

d(x , x) = 0 for all x in X .

d(x , y) = d(y , x) for all x and y in X .

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z in X .
You can’t take a shortcut from x to z by going through y.

A metric space is a set X together with a distance function on X .
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Metric spaces

The first three axioms define distance.

Given any geometric figure (any set, even), we can define
what the distance between two points is.

A distance function on a set X is a function d : X × X → [0,∞)
satisfying the following axioms.

d(x , x) = 0 for all x in X .

d(x , y) = d(y , x) for all x and y in X .

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z in X .
You can’t take a shortcut from x to z by going through y.

A metric space is a set X together with a distance function on X .
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Metric spaces

The first three axioms define distance.

Given any geometric figure (any set, even), we can define
what the distance between two points is.

A distance function on a set X is a function d : X × X → [0,∞)
satisfying the following axioms.

d(x , x) = 0 for all x in X .

d(x , y) = d(y , x) for all x and y in X .

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z in X .
You can’t take a shortcut from x to z by going through y.

A metric space is a set X together with a distance function on X .
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Metric spaces

The first three axioms define distance.

Given any geometric figure (any set, even), we can define
what the distance between two points is.

A distance function on a set X is a function d : X × X → [0,∞)
satisfying the following axioms.

d(x , x) = 0 for all x in X .

d(x , y) = d(y , x) for all x and y in X .

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z in X .
You can’t take a shortcut from x to z by going through y.

A metric space is a set X together with a distance function on X .
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Metric spaces

Examples of metric spaces:

Graphs
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Metric spaces

Examples of metric spaces:

Graphs
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Metric spaces

Examples of metric spaces:

Graphs
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Metric spaces

Examples of metric spaces:

Graphs
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Metric spaces

Examples of metric spaces:

Square complexes
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Paths

A path in a space X is a continuous function from the unit interval
to X .
That is, nearby points are sent to nearby points.

A shortest path between two points x and y is called a geodesic
path between x and y .
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Geodesic spaces

4th axiom:
A metric space X is called a geodesic space if there is a(t least
one) shortest path between any two points in X .

Example of a geodesic space:

Sphere
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Geodesic paths

Example of a geodesic space:
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Geodesic triangles
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Geodesic triangles

A geodesic triangle ∆xyz is a “triangle” whose sides are
geodesic paths joining x , y , and z in pairs.



Curvature
without
calculus

Julie Carmela
La Corte

Motivation:
Classical
curvature
Normal curvature

Comparison
geometry
Metric spaces

Geodesic spaces

Nonpositive
curvature

Application:
Reconfig-
urable
systems

Comparison triangles

We can describe the curvature of a space using only triangles.

Suppose ∆xyz is a geodesic triangle in a metric space. A
comparison triangle ∆x ′y ′z ′ is a triangle in the (Euclidean)
plane with corresponding sides equal in length.

See cardboard model. . .
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Comparison triangles

We can describe the curvature of a space using only triangles.

Suppose ∆xyz is a geodesic triangle in a metric space. A
comparison triangle ∆x ′y ′z ′ is a triangle in the (Euclidean)
plane with corresponding sides equal in length.
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Comparison triangles

We can describe the curvature of a space using only triangles.

Suppose ∆xyz is a geodesic triangle in a metric space. A
comparison triangle ∆x ′y ′z ′ is a triangle in the (Euclidean)
plane with corresponding sides equal in length.
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Nonpositive curvature: The “thin triangles”
definition

A geodesic triangle ∆xyz is thin if the distance between any two
points on ∆xyz is no larger than the distance between the
corresponding points on a comparison triangle:

d(p,q) ≤ d(p′,q′).

We say that a geodesic space is nonpositively curved (NPC) at
a point w if all geodesic triangles sufficiently near w are thin.

In a nonpositively curved space, all geodesic triangles are thin.
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Nonpositively curved spaces

Examples of nonpositively curved spaces:

The Cartesian plane with Quadrant I removed
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Nonpositively curved spaces

Examples of nonpositively curved spaces:

Convex subsets of the plane
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Nonpositively curved spaces

Examples of nonpositively curved spaces:

Convex subsets of the plane

x

y

z
-10 -5 5 10

-10

-5

5

10



Curvature
without
calculus

Julie Carmela
La Corte

Motivation:
Classical
curvature
Normal curvature

Comparison
geometry
Metric spaces

Geodesic spaces

Nonpositive
curvature

Application:
Reconfig-
urable
systems

Nonpositively curved spaces

Examples of nonpositively curved spaces:

Unions of convex sets glued along convex subsets

Cylindrically deleted cubes

Image from S. Alexander, R. Bishop, R. Ghrist, “Pursuit and evasion in non-convex domains of arbitrary dimension” (2006)
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Nonpositive curvature: The “pointy angles”
definition

An alternative way to characterize nonpositively curved spaces:

A geodesic triangle is pointy if the angle between any two of its
sides is no larger than the corresponding angle of a comparison
triangle.

A geodesic space is nonpositively curved (NPC) near a point w
if all triangles sufficiently near w are pointy.
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Nonpositive curvature: The “pointy angles”
definition

More examples:

A graph is nonpositively curved at every point.
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Gromov’s Link Condition

Consider a surface made up of n equilateral triangles arranged
cyclically around a central vertex v .

When n = 5, the surface contains “fat” triangles.

Do any of the surfaces we saw today contain fat triangles?

Gromov’s Link Condition.

A surface made up of n equilateral triangles arranged
cyclically around a central vertex v is nonpositively curved at
v if and only if. . .
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What is comparison geometry good for?

Comparison geometry has practical applications to robotics,
chemical engineering, biology. . .

For example, many robotic systems can be modeled by
nonpositively curved cube complexes.

Two robots moving along tracks on a factory floor
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State complex

Every point in the state complex corresponds to a possible
configuration of the system.
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Shape-changing robots

Every point in the state complex corresponds to a possible
configuration of the system.

RECONFIGURATION 7

FIGURE 2. The generator for a 2-d hexagonal lattice system with
pivoting locomotion. The domain is the graph dual to the hex lattice
shown. Shaded cells are occupied, white are unoccupied. [left, top]
The local states uloc

0 and uloc
1 are shown. [left, bottom] The support

of the generator, with trace shaded. [right] A typical state in this
reconfigurable system.

FIGURE 3. For a line of hexagons filing out of a constrained tunnel,
the state complex is contractible.

the transition graph for this system is complicated, the state complex itself is con-
tractible: this is the case for all lengths N .

Example 3.3 (configuration space of points on a graph). Consider a graph G and al-
phabet A = {0, . . . , n} used to specify empty/occupied vertices. There are n types
of generators {φi}n

1 in this homogeneous system, one for each nonzero element of
A. The support and trace of each φi is precisely the closure of an (arbitrary) edge.
The local states of this φi evaluate to 0 on one of the endpoints and i on the other.
The homogeneous reconfigurable system generated from a state u on G having ex-
actly one vertex labeled i for each i = 1, . . . , n mimics an ensemble of N distinct
non-colliding points on the graph G. If we reduce the alphabet to {0, 1}, then the
system represents n identical agents.

This system is a discrete model of a collection of robots which are constrained to
travel along tracks or guidewires [22, 23]. The associated state complexes for these

State complex for a metamorphic robotic system
composed of pivoting hexagonal tiles

Image from R. Ghrist and V. Peterson, “The geometry and topology of reconfiguration” (2007)
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Planning a change of state

Paths in the state complex correspond to reconfiguration
strategies.
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All computer-generated pictures and animations created in
Mathematica except where noted.
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