Arrow's Impossibility Theorem, or: How to rig an election

Julie Carmela La Corte
University of Wisconsin-Milwaukee

November 17, 2014

Contents

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

1 Introduction

- Arrow's Impossibility Theorem

■ Preference Schedules

2 Voting schemes

- Plurality Method
- Borda Count Method
- The Method of Pairwise Comparisons

■ Instant runoff voting
3 Group work

The Election Process

Arrow's Impossibility Theorem

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

The Election Process

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Interpreting

Count the ballots, and decide the outcome of the election in a consistently fair manner.

Surely there must be a reasonable way to accomplish this.

The Election Process

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Voting

Interpreting

Count the ballots, and decide the outcome of the election in a consistently fair manner.

Surely there must be a reasonable way to accomplish this... right?

Arrow's Impossibility Theorem

Arrow's Impossibility Theorem

Julie Carmela La Corte

Arrow's Impossibility Theorem (1951)
No scheme for deciding the outcome of a democratic election involving three or more candidates is consistently fair.

Introduction

Kenneth Arrow

Arrow's Impossibility Theorem

Arrow's Impossibility Theorem

Julie Carmela La Corte

Arrow's Impossibility Theorem (1951)

No scheme for deciding the outcome of a democratic election involving three or more candidates is consistently fair.

Introduction

Kenneth Arrow

- A method for deciding the outcome of an election is called a voting scheme.
- Arrow stated minimum requirements, called fairness criteria, which define what it means for a voting scheme to be "consistently fair."
- Today we'll look at some different voting schemes, and introduce Arrow's fairness criteria as we go.

Arrow's Impossibility Theorem

Arrow's Impossibility Theorem

Julie Carmela La Corte

Arrow's Impossibility Theorem (1951)

No scheme for deciding the outcome of a democratic election involving three or more candidates is consistently fair.

Introduction

Kenneth Arrow

- A method for deciding the outcome of an election is called a voting scheme.
- Arrow stated minimum requirements, called fairness criteria, which define what it means for a voting scheme to be "consistently fair."
- Today we'll look at some different voting schemes, and introduce Arrow's fairness criteria as we go.

Arrow's Impossibility Theorem

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem (1951)
No scheme for deciding the outcome of a democratic election involving three or more candidates is consistently fair.

Kenneth Arrow

- A method for deciding the outcome of an election is called a voting scheme.
- Arrow stated minimum requirements, called fairness criteria, which define what it means for a voting scheme to be "consistently fair."
- Today we'll look at some different voting schemes, and introduce Arrow's fairness criteria as we go.

Preference Ballots

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

In all our elections, each voter will be asked to fill out a preference ballot in which she ranks all the candidates in order of preference.

Ex. Voters were asked,
Who is the greatest $R \& B$ singer of all time?
Their choices were Al Green, Bevoncé, Rav Charles, and Diana Ross.

Sample preference ballot:

Preference Ballots

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

In all our elections, each voter will be asked to fill out a preference ballot in which she ranks all the candidates in order of preference.

Ex. Voters were asked,
Who is the greatest $R \& B$ singer of all time?
Their choices were AI Green, Beyoncé, Ray Charles, and Diana Ross.

Sample preference ballot:

Preference Ballots

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

In all our elections, each voter will be asked to fill out a preference ballot in which she ranks all the candidates in order of preference.

Ex. Voters were asked,
Who is the greatest $R \& B$ singer of all time?
Their choices were AI Green, Beyoncé, Ray Charles, and Diana Ross.

Sample preference ballot:

	Ballot
1st	Diana Ross
2nd	Ray Charles
3rd	Beyoncé
4th	Al Green

Preference Ballots

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

In all our elections, each voter will be asked to fill out a preference ballot in which she ranks all the candidates in order of preference.

Ex. Voters were asked,
Who is the greatest $R \& B$ singer of all time?
Their choices were Al Green, Beyoncé, Ray Charles, and Diana Ross.

Sample preference ballot:

Ballot	
1st	D
2nd	C
3rd	B
4th	A

Preference Schedules

Arrow's Impossibility Theorem Julie Carmela La Corte

Introduction

Arrow's Impossibility

 TheoremPreference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

Ex. Alisha, Boris, Carmen, and Dave are running for president of the Math Appreciation Society at Tasmania State University.

Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D

Ballot	
1st	B
2nd	D
3rd	C
4th	A
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	C
2nd	D
3rd	B
4th	A

Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D

Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D

Preference Schedules

Arrow's Impossibility Theorem Julie Carmela La Corte

Introduction

Arrow's Impossibility

 Theorem
Preference

Schedules
Voting
schemes
Plurality Method

Borda Count Method

The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

Ex. Alisha, Boris, Carmen, and Dave are running for president of the Math Appreciation Society at Tasmania State University.

Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D

Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D

Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	A
2nd	B
3rd	C
4th	D
Ballot	
1st	D
2nd	C
3rd	B
4th	A
Ballot	
1st	C
2nd	B
3rd	D
4th	A
Ballot	
1st	A
2nd	B
3rd	C
4th	D

Preference Schedules

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

There are only a handful of possible ways to fill out the ballot. If we stack identical ballots together, we see that there were only five different ballots in the election.

We can summarize the ballot information with a preference schedule, a table which shows how many of each type of ballot there were:

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

Henceforth, we will give all elections in the form of a preference schedule.

Plurality Method

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes

One way to decide the winner of the Math Appreciation Society election is to declare that the winner is the candidate with the most 1st choice votes.

We call this the plurality method for deciding the election.

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

Plurality Method

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction
Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes

One way to decide the winner of the Math Appreciation Society election is to declare that the winner is the candidate with the most 1st choice votes.

We call this the plurality method for deciding the election.

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C

Plurality Method

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction
Arrow's Impossibility Theorem
Preference
Schedules

One way to decide the winner of the Math Appreciation Society election is to declare that the winner is the candidate with the most 1st choice votes.

We call this the plurality method for deciding the election.

Eliminating all but the 1st choice votes in the preference schedule, we see that Alisha is the winner:

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C

Plurality Method

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction
Arrow's Impossibility Theorem
Preference
Schedules

One way to decide the winner of the Math Appreciation Society election is to declare that the winner is the candidate with the most 1st choice votes.

We call this the plurality method for deciding the election.

Eliminating all but the 1st choice votes in the preference schedule, we see that Alisha is the winner:

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C

Is there any problem with awarding this election to Alisha?

Plurality Method

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction
Arrow's Impossibility Theorem
Preference
Schedules

One way to decide the winner of the Math Appreciation Society election is to declare that the winner is the candidate with the most 1st choice votes.

We call this the plurality method for deciding the election.

Eliminating all but the 1st choice votes in the preference schedule, we see that Alisha is the winner:

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C

Is there any problem with awarding this election to Alisha? iiliiiliiliiliiliiliiliiliiliiliiliiliilii

Majority Candidates

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

 schemesPlurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

A majority is more than 50% of the votes.

1824 presidential election

candidate	percent of electoral votes won
Andrew Jackson	37.9%
John Quincy Adams	32.2%
William Crawford	15.7%
Henry Clay	14.2%

"The election of Paul LePage with 38% of the vote means Maine's next governor won't take office with the support of the majority of voters-a situation that has occurred in six of the last seven gubernatorial elections." (Portland Press Herald, Nov. 10, 2010)

Majority Candidates

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

Voting

schemes

Plurality Method

Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

A majority is more than 50% of the votes.

1824 presidential election

candidate	percent of electoral votes won
Andrew Jackson	37.9%
John Quincy Adams	32.2%
William Crawford	15.7%
Henry Clay	14.2%

"The election of Paul LePage with 38% of the vote means Maine's next governor won't take office with the support of the majority of voters-a situation that has occurred in six of the last seven gubernatorial elections. (Portland Press Herald, Nov. 10, 2010)

Majority Candidates

Arrow's
Impossibility
Theorem
Julie Carmela
La Corte

Introduction

A majority is more than 50% of the votes.

1824 presidential election

candidate	percent of electoral votes won
Andrew Jackson	37.9%
John Quincy Adams	32.2%
William Crawford	15.7%
Henry Clay	14.2%

"The election of Paul LePage with 38% of the vote means Maine's next governor won't take office with the support of the majority of voters-a situation that has occurred in six of the last seven gubernatorial elections." (Portland Press Herald, Nov. 10, 2010)

Insincere Voting

Arrow's
Impossibility
Theorem
Julie Carmela
La Corte

Introduction
Arrow's Impossibility Theorem
Preference Schedules

Voting

schemes

Plurality Method

Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

iiiiiiiiliiiiiiiiiiiiliiiiiiliiiiiiiiiiiiiiii

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C

There is another problem with the plurality method.

Insincere Voting

Arrow's Impossibility

Theorem
Julie Carmela
La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes

number of voters:	14	10	8	4	1
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

Realizing that their candidate has no chance of winning, Boris's supporters (pink) decide that they would be "wasting their vote," and cast their votes for Carmen instead.

Insincere Voting

Arrow's Impossibility Theorem

Julie Carmela
La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes

number of voters:	14	10	8	4	1
1st choice	A	C	D	C	C
(4)					

We see that, if the plurality method is used to decide the winner, voters are pressured to vote for one of only two candidates.

Duverger's Law. The plurality method necessarily leads to a two-party system, given enough time.

Is this the two-party system unfair?

Insincere Voting

Arrow's Impossibility
Theorem
Julie Carmela
La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes

number of voters:	14	10	8	4	1
1st choice	A	C	D	C	C
(1)					

We see that, if the plurality method is used to decide the winner, voters are pressured to vote for one of only two candidates.

Duverger's Law. The plurality method necessarily leads to a two-party system, given enough time.

Is this the two-party system unfair?

Majority Criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes

Comparisons
Instant runoff voting
Group work

Fairness Criterion \#1: The Majority Criterion
A majority candidate (that is, a candidate with more than half of the first-choice votes) should always be the winner.

Majority Criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility

 TheoremPreference
Schedules
Voting
schemes

Fairness Criterion \#1: The Majority Criterion

A majority candidate (that is, a candidate with more than half of the first-choice votes) should always be the winner.

We say a voting scheme violates the Majority Criterion if it is possible for a majority candidate to lose the election.

Q: Does the Plurality Method violate the Majority Criterion?

The Borda Count Method

Arrow's Impossibility Theorem

Julie Carmela

 La CorteIntroduction
Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method

Do you know of any elections in which 2nd-choice, 3rd-choice, etc., votes actually count?

The Borda Count Method

Arrow's Impossibility Theorem

Do you know of any elections in which 2nd-choice, 3rd-choice, etc., votes actually count?

The recipient of the MVP Award in Major League Baseball is chosen by the Baseball Writers Association of America.

■ Each member of the Association ranks the candidates from 1st choice to last choice.

■ A last-choice ranking is worth 1 point. A next-to-last-choice ranking is worth 2 points, and so on.

The winner is the candidate with the most points.
We call this scheme the Borda count method.

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method

Suppose that 11 voters choose the recipient of the MVP Award from the four candidates Abbott, Butler, Castillo, and Davis.

number of voters:	6	2	3
1st choice	A	B	C
2nd choice	B	C	D
3rd choice	C	D	B
4th choice	D	A	A

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem

Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

	2		
1st choice	$A: 4 \times 6=24$	B	C
2nd choice	B	C	D
3rd choice	C	D	B
4th choice	D	$A: 1 \times 2=2$	$A: 1 \times 3=3$

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem

Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

	6	2	3
1st choice	$A: 4 \mathrm{pts}$	$B: 4 \mathrm{pts}$	$C: 4 \mathrm{pts}$
2nd choice	$B: 3 \mathrm{pts}$	$C: 3 \mathrm{pts}$	$D: 3 \mathrm{pts}$
3rd choice	$C: 2 \mathrm{pts}$	$D: 2 \mathrm{pts}$	$B: 2 \mathrm{pts}$
4th choice	$D: 1 \mathrm{pt}$	$A: 1 \mathrm{pt}$	$A: 1 \mathrm{pt}$

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method

	6	2	3
1st choice	$A: 4 \times 6=24$	$B: 4 \times 2=8$	$C: 4 \times 3=12$
2nd choice	$B: 3 \times 6=18$	$C: 3 \times 2=6$	$D: 3 \times 3=9$
3rd choice	$C: 2 \times 6=12$	$D: 2 \times 2=4$	$B: 2 \times 3=6$
4th choice	$D: 1 \times 6=6$	$A: 1 \times 2=2$	$A: 1 \times 3=3$

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method

	6	2	3
1st choice	$A: 4 \times 6=24$	$B: 4 \times 2=8$	$C: 4 \times 3=12$
2nd choice	$B: 3 \times 6=18$	$C: 3 \times 2=6$	$D: 3 \times 3=9$
3rd choice	$C: 2 \times 6=12$	$D: 2 \times 2=4$	$B: 2 \times 3=6$
4th choice	$D: 1 \times 6=6$	$A: 1 \times 2=2$	$A: 1 \times 3=3$

A gets $24+2+3=29$ points

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method

	6	2	3
1st choice	$A: 4 \times 6=24$	$B: 4 \times 2=8$	$C: 4 \times 3=12$
2nd choice	$B: 3 \times 6=18$	$C: 3 \times 2=6$	$D: 3 \times 3=9$
3rd choice	$C: 2 \times 6=12$	$D: 2 \times 2=4$	$B: 2 \times 3=6$
4th choice	$D: 1 \times 6=6$	$A: 1 \times 2=2$	$A: 1 \times 3=3$

A gets $24+2+3=29$ points, B gets $18+8+6=32$ points

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method

	6	2	3
1st choice	$A: 4 \times 6=24$	$B: 4 \times 2=8$	$C: 4 \times 3=12$
2nd choice	$B: 3 \times 6=18$	$C: 3 \times 2=6$	$D: 3 \times 3=9$
3rd choice	$C: 2 \times 6=12$	$D: 2 \times 2=4$	$B: 2 \times 3=6$
4th choice	$D: 1 \times 6=6$	$A: 1 \times 2=2$	$A: 1 \times 3=3$

A gets $24+2+3=29$ points,
B gets $18+8+6=32$ points,
C gets $12+6+12=30$ points

The Borda Count Method: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem

Preference
Schedules
Voting
schemes
Plurality Method

	6	2	3
1st choice	$A: 4 \times 6=24$	$B: 4 \times 2=8$	$C: 4 \times 3=12$
2nd choice	$B: 3 \times 6=18$	$C: 3 \times 2=6$	$D: 3 \times 3=9$
3rd choice	$C: 2 \times 6=12$	$D: 2 \times 2=4$	$B: 2 \times 3=6$
4th choice	$D: 1 \times 6=6$	$A: 1 \times 2=2$	$A: 1 \times 3=3$

A gets $24+2+3=29$ points,
B gets $18+8+6=32$ points,
C gets $12+6+12=30$ points,
D gets $6+4+9=19$ points.

And the winner is...

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method

	6	2	3
1st choice	$A: 4 \times 6=24$	$B: 4 \times 2=8$	$C: 4 \times 3=12$
2nd choice	$B: 3 \times 6=18$	$C: 3 \times 2=6$	$D: 3 \times 3=9$
3rd choice	$C: 2 \times 6=12$	$D: 2 \times 2=4$	$B: 2 \times 3=6$
4th choice	$D: 1 \times 6=6$	$A: 1 \times 2=2$	$A: 1 \times 3=3$

w. A gets $24+2+3=29$ points,
B gets $18+8+6=32$ points, C gets $12+6+12=30$ points,
D gets $6+4+9=19$ points.

The Borda count and the Majority Criterion

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility
Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

■ Is there a majority candidate?

- Does the Borda count method violate the Majority Criterion?

The Borda count and the Majority Criterion

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

- Is there a majority candidate?

■ Does the Borda count method violate the Majority Criterion?

Is there a Condorcet candidate?

Arrow's Impossibility Theorem
Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method

A Condorcet candidate is a candidate that is favored over every other candidate in a head-to-head matchup.

number of voters:	6	2	3
1st choice	A	B	C
2nd choice	B	C	D
3rd choice	C	D	B
4th choice	D	A	A

Is there a Condorcet candidate?

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

A Condorcet candidate is a candidate that is favored over every other candidate in a head-to-head matchup.

number of voters:	6	2	3
1st choice	A	B	
2nd choice	B		
3rd choice			B
4th choice		A	A

In a two-way race, 6 voters would prefer A over B, while only 5 would prefer B over A.

Is there a Condorcet candidate?

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction
Arrow's Impossibility Theorem
Preference
Schedules
Voting

schemes

Plurality Method

A Condorcet candidate is a candidate that is favored over every other candidate in a head-to-head matchup.

number of voters:	6	2	3
1st choice	A		C
2nd choice		C	
3rd choice	C		
4th choice		A	A

In a two-way race, 6 voters would prefer A over C, while only 5 would prefer C over A.

Is there a Condorcet candidate?

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

A Condorcet candidate is a candidate that is favored over every other candidate in a head-to-head matchup.

number of voters:	6	2	3
1st choice	A		
2nd choice			D
3rd choice		D	
4th choice	D	A	A

In a two-way race, 6 voters would prefer A over D, while only 5 would prefer D over A.

Is there a Condorcet candidate?

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

A Condorcet candidate is a candidate that is favored over every other candidate in a head-to-head matchup.

number of voters:	6	2	3
1st choice	A	B	C
2nd choice	B	C	D
3rd choice	C	D	B
4th choice	D	A	A

A is a Condorcet candidate.
A would win in any two-way race against one of the other candidates.

Is there a Condorcet candidate?

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

A Condorcet candidate is a candidate that is favored over every other candidate in a head-to-head matchup.

number of voters:	6	2	3
1st choice	A	B	C
2nd choice	B	C	D
3rd choice	C	D	B
4th choice	D	A	A

A is both a Condorcet candidate and a majority candidate.
But B won the election...

Condorcet Criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

Fairness Criterion \#2: The Condorcet Criterion

A candidate that beats each of the other candidates in a head-to-head matchup should be the winner.

Condorcet Criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

The Borda count is not a fair voting scheme
The Borda count method violates both the Majority Criterion and the Condorcet Criterion.

Condorcet Criterion

Arrow's Impossibility Theorem

Julie Carmela
La Corte

Introduction
Arrow's Impossibility Theorem
Preference
Schedules

Voting

 schemesPlurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

> The
> There's something wrong with a voting system where a majority of voters can vote for a candidate, and he can still lose.

The
By Devin McCarthy and Matt Dewilde
Majı

Cabrera vs. Trout / ESPN
Major League Baseball decides its MVP using a ranked-choice system, of sorts. It is a point-based system known as a "Borda count" - a method already discussed on this blog in the context of FIFA Ballon D'Or voting. It's a pretty good voting system for baseball, as it allows voters to fully express their MVP preferences without any fear of vote splitting or wasting a vote on a "spoiler" player.

Condorcet Criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

The plurality method is not a fair voting scheme
The plurality method violates the Condorcet Criterion.

The plurality method violates the Condorcet criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction
Arrow's Impossibility Theorem
Preference Schedules

Ex. The marching band at Tasmania State University has been invited to perform at five different bowl games: the Rose Bowl, the Hula Bowl, the Fiesta Bowl, the Sugar Bowl, and the Orange Bowl. The following preference schedule shows the results of an election held among the 100 members of the band, to be decided by the plurality method.

number of voters:	49	48	3
1st choice	R	H	F
2nd choice	H	S	H
3rd choice	F	O	S
4th choice	O	F	O
5th choice	S	R	R

■ Is there a Condorcet candidate?
■ Who wins the election?

The Method of Pairwise Comparisons

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Perhaps it would be best to decide elections on the basis of head-to-head matchups (or pairwise comparisons).

To find the winner of an election under the method of pairwise comparisons:

■ List all the possible pairwise comparisons.
■ For each pairwise comparison, give 1 point to the winner, and 0 points to the loser.
■ If there is a tie, give each candidate $\frac{1}{2}$ point.

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes

Ex. Five athletes compete for an award that is decided by a poll of sportswriters. The winner will be chosen by the method of pairwise comparisons.

1st choice	A	B	B	C	C	D	E
2nd choice	D	A	A	B	D	A	C
3rd choice	C	C	D	A	A	E	D
4th choice	B	D	E	D	B	C	B
5th choice	E	E	C	E	E	B	A
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela

 La Corte
Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method

Pairwise
Comparisons
Instant runoff voting
Group work
$A(7) ; B(15)$

1st choice	A	B	B				
2nd choice		A	A	B		A	
3rd choice				A	A		
4th choice	B				B		B
5th choice						B	A
number of voters:	2	6	4	1	1	4	4

B: \mid
C:
D:
E:

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work
$A(16) ; C(6)$

1st choice	A			C	C		
2nd choice		A	A			A	C
3rd choice	C	C		A	A		
4th choice						C	
5th choice			C				A
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela

 La Corte
Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela

 La Corte
Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

1st choice		B	B	C	C		
2nd choice				B			C
3rd choice	C	C					
4th choice	B				B	C	B
5th choice			C			B	
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference Schedules

Voting

schemes
Plurality Method

Borda Count Method

The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

気 $B(11) ; D(11)$

1st choice		B	B			D	
2nd choice	D			B	D		
3rd choice			D				D
4th choice	B	D		D	B		B
5th choice					B		
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes

Plurality Method

Borda Count Method

The Method of
Pairwise
Comparisons
Instant runoff voting
Group work
$B(14) ; E(8)$

1st choice		B	B				E
2nd choice				B			
3rd choice						E	
4th choice	B		E		B		B
5th choice	E	E		E	E	B	
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

负罗 $C(12) ; D(10)$

1st choice				C	C	D	
2nd choice	D				D		C
3rd choice	C	C	D				D
4th choice		D		D		C	
5th choice			C				
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work
$C(10) ; E(12)$

1st choice				C	C		E
2nd choice							C
3rd choice	C	C				E	
4th choice			E			C	
5th choice	E	E	C	E	E		
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes

Plurality Method

Borda Count Method

The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

1st choice						D	E
2nd choice	D				D		
3rd choice			D			E	D
4th choice		D	E	D			
5th choice	E	E		E	E		
number of voters:	2	6	4	1	1	4	4

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

1st choice	A	B	B	C	C	D	E
2nd choice	D	A	A	B	D	A	C
3rd choice	C	C	D	A	A	E	D
4th choice	B	D	E	D	B	C	B
5th choice	E	E	C	E	E	B	A
number of voters:	2	6	4	1	1	4	4

$$
\begin{aligned}
A: & \| \\
B: & \| \frac{1}{2} \\
C: & \| \\
D: & I \frac{1}{2} \\
E: & 1
\end{aligned}
$$

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference Schedules

Voting

schemes
Plurality Method

Borda Count Method

The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

1st choice	A	B	B	Q	Q	D	E
2nd choice	D	A	A	B	D	A	Q
3rd choice	Q	Q	D	A	A	E	D
4th choice	B	D	E	D	B	Q	B
5th choice	E	E	Q	E	E	B	A
number of voters:	2	6	4	1	1	4	4

Unfortunately, one of the candidates turns out to be ineligible...

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference Schedules

Voting

schemes

1st choice	A	B	B			D	E
2nd choice	D	A	A	B	D	A	
3rd choice			D	A	A	E	D
4th choice	B	D	E	D	B		B
5th choice	E	E		E	E	B	A
number of voters:	2	6	4	1	1	4	4

Unfortunately, one of the candidates turns out to be ineligible.
We delete the candidate from the preference schedule,

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem Julie Carmela La Corte

Introduction

1st choice	A	B	B	B	D	D	E
2nd choice	D	A	A	A	A	A	D
3rd choice	B	D	D	D	B	E	B
4th choice	E	E	E	E	E	B	A
number of voters:	2	6	4	1	1	4	4

Unfortunately, one of the candidates turns out to be ineligible. We delete the candidate from the preference schedule, and obtain a new preference schedule.

Will this affect the outcome?

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem Julie Carmela La Corte

Introduction

1st choice	A	B	B	B	D	D	E
2nd choice	D	A	A	A	A	A	D
3rd choice	B	D	D	D	B	E	B
4th choice	E	E	E	E	E	B	A
number of voters:	2	6	4	1	1	4	4

Unfortunately, one of the candidates turns out to be ineligible. We delete the candidate from the preference schedule, and obtain a new preference schedule.

Will this affect the outcome?

The Method of Pairwise Comparisons: Sample election

Arrow's Impossibility Theorem Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

1st choice	A	B	B	B	D	D	E
2nd choice	D	A	A	A	A	A	D
3rd choice	B	D	D	D	B	E	B
4th choice	E	E	E	E	E	B	A
number of voters:	2	6	4	1	1	4	4

Independence-of-Irrelevant-Alternatives Criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

Fairness Criterion \#3: The

 Independence-of-Irrelevant-Alternatives CriterionThe winner of an election should not be hurt by one of the losers dropping out.

Instant runoff voting

Arrow's

■ Some municipalities require that a candidate obtain a majority of the first-place votes to be elected. When there are three or more candidates, quite often there is no majority candidate.

- A run-off election is typically held at this point: the last place candidate is eliminated from the ballot, and a new election is held.
- The method of instant runoff voting (a.k.a. plurality-with-elimination) is a more efficient way to implement the same process. This method has become somewhat of a trend in recent years.
- Voters fill out a preference ballot so that they do not need to vote over and over. From the original preference schedule, we eliminate the candidates with the fewest first-place votes one at a time until one of them gets a majority.

Instant runoff voting

Arrow's
Impossibility Theorem

Julie Carmela La Corte

Introduction

- Round 1.

Count the first-place votes for each candidate. If a candidate has a majority of first-place votes, then that candidate is the winner. Otherwise, eliminate the candidate (or candidates if there is a tie) with the fewest last-place votes.

- Round 2.

Cross out the names of any candidates eliminated from the preference schedule, and recount the first-place votes. If a candidate has a majority of first-place votes, then that candidate is the winner. Otherwise, eliminate the candidate (or candidates if there is a tie) with the fewest last-place votes.

- Round 3.

Repeat Round 2 until a winner is found.

Instant runoff voting

Arrow's
Impossibility
Theorem
Julie Carmela
La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Ex. The cities of Athens, Barcelona, and Calgary are competing to be the host city for the 2020 Olympics.
A secret vote of the 29 members of the Executive Council of the International Olympic Committee is to be held.

Two days before the actual election, a straw poll ${ }^{1}$ is held.
Preference schedule for straw poll

1st choice	A	B	C	A
2nd choice	B	C	A	C
3rd choice	C	A	B	B
number of voters:	7	8	10	4

(It turns out that Calgary wins this straw poll.)
${ }^{1}$ A straw poll is an unofficial vote or poll indicating the trend of opinion on a candidate or issue.

Instant runoff voting: Sample election

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

When word gets out that Calgary is favored to win the election, the four delegates represented by the rightmost column of the straw poll's preference schedule decide to switch their votes and vote for Calgary first.

Preference schedule for actual election

1st choice	A	B	C
2nd choice	B	C	A
3rd choice	C	A	B
number of voters:	7	8	14

Now who wins?

Instant runoff voting: Sample election

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

Preference schedule for actual election

1st choice	A	B	C
2nd choice	B	C	A
3rd choice	C	A	B
number of voters:	7	8	14

■ Majority: More than $(7+8+14) \div 2$

Instant runoff voting: Sample election

Arrow's Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules
Voting
schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

Preference schedule for actual election

1st choice	A	B	C
2nd choice	B	C	A
3rd choice	C	A	B
number of voters:	7	8	14

■ Majority: More than $(7+8+14) \div 2=14.5$

Instant runoff voting: Sample election

Arrow's
Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Preference schedule for actual election

1st choice	A	B	C
2nd choice	B	C	X
3rd choice	C	A	B
number of voters:	7	8	14

■ Majority: More than 14.5

Instant runoff voting: Sample election

Arrow's
Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Preference schedule for actual election

1st choice	B	B	C
2nd choice	C	C	B
number of voters:	7	8	14

■ Majority: More than 14.5

Instant runoff voting: Sample election

Arrow's
Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Preference schedule for actual election

1st choice	B	B	C
2nd choice	C	C	B
number of voters:	7	8	14

■ Majority: More than 14.5
■ B: 15

- C: 14

Instant runoff voting: Sample election

Arrow's
Impossibility Theorem

Julie Carmela

La Corte

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Preference schedule for actual election

1st choice	B	B	C
2nd choice	C	C	B
number of voters:	7	8	14

■ Majority: More than 14.5
■ B: 15

- C: 14

C: 14 (00)

Monotonicity Criterion

Arrow's Impossibility Theorem

Julie Carmela La Corte

Introduction

Arrow's Impossibility

 TheoremPreference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting
Group work

Fairness Criterion \#4: The Monotonicity Criterion
A voter should not be able to hurt a candidate by moving her up in his ballot.

Summary

Arrow's Impossibility Theorem

Introduction

Arrow's Impossibility Theorem
Preference
Schedules

Voting

schemes
Plurality Method
Borda Count Method
The Method of
Pairwise
Comparisons
Instant runoff voting

Violations of the Fairness Criteria

Fairness Criterion	Plurality	Borda count	Pairwise comp.	Instant runoff
Majority	-	\checkmark	-	$\bar{\checkmark}$
Condorcet	\checkmark	\checkmark	-	\checkmark
Indep.-of-lrel.	\checkmark	\checkmark	\checkmark	\checkmark
Monotonicity	-	-	-	\checkmark

A checkmark (\checkmark) indicates that the voting scheme violates the Criterion.

