MATH 1001 Worksheet \#2 | Triangles, Polygons, and Circles

Contents

A. Similar Triangles.
B. Perimeter, Area, and Circumference.
(B1) Perimeter of a Polygon
(B2) Area of a Rectangle
(B3) Area of a Triangle
(B4) Area vs. Perimeter
(B5) Area and Circumference of Circles

A. Similar Triangles.

A triangle is defined to be three line segments, joined end to end, starting and ending at the same point.
Any triangle can be described by:

- its shape, and
- its scale.

Let us now define "shape" and "scale" for triangles.

Given a triangle with side lengths

$$
a, b, \text { and } c \quad(\text { smallest to largest, } a \leq b \leq c),
$$

multiplying all three side lengths by the same number (call it the SCALE) yields a triangle with the same shape.

Let us call the second triangle's side lengths

$$
A, B, \text { and } C \quad(\text { smallest to largest, } A \leq B \leq C) .
$$

Then

$$
\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\text { the SCALE }
$$

and we say the two triangles are similar triangles.

show proportion equation \checkmark
$\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\frac{2}{1}$

IT Notice that the SCALE is the ratio of the proportion equation $\frac{A}{a}=\frac{B}{b}=\frac{C}{c}$, just as the HOURLY WAGE equals the ratio of the proportion equation $\frac{\text { wages paid }}{\text { hours worked }}=\frac{\$ 14.50}{2 \mathrm{hr}}=\frac{\$ 29}{4 \mathrm{hr}}$.

To find an unknown side length, given two similar triangles, follow these steps:

- For the first triangle, label the smallest side as a, the next smallest side as b, and the largest side as c.
- For the second triangle, label the smallest side as A, the next smallest side as B, and the largest side as C.
- Then by definition of similar triangles,

$$
\frac{A}{a}=\frac{B}{b}=\frac{C}{c}
$$

- Fill in the known side lengths to get an equation of two fractions that involves the unknown side length, x.
- Cross-multiply, then find x.

$$
\begin{array}{ll}
a=13 & A=27 \\
b=21 & B=x \\
c=? & C=?
\end{array}
$$

$$
\frac{27}{13}=\frac{x}{21}
$$

$$
13 x=(27)(21)
$$

$$
x=\frac{567}{13} \approx 43.62
$$

Exercise 1. Solve each proportion equation. Round to the nearest hundredth when necessary.

(a) $\frac{1}{1}=\frac{x}{4}$	(d) $\frac{100}{17}=\frac{50}{x}$	(g) $\frac{8.1}{4.4}=\frac{x}{6.4}$
(b) $\frac{1}{2}=\frac{x}{4}$		
(e) $\frac{x}{12}=\frac{40}{3}$	(h) $\frac{10.2}{x}=\frac{21}{30}$	

Exercise 2.

(a) Find x.

(b) Find u.

Here, cm means centimeters.
(c) Find?

B. Perimeter, Area, and Circumference.

A polygon is a sequence of line segments joined end to end

- which starts and ends at the same point,
- such that the line segments meet only at their endpoints (that is, they do not "cross").
(B1) Perimeter of a Polygon

To find the perimeter of any polygon, add up all its side lengths.

Exercise 3. Draw a picture of a rectangle 300 ft . long and 125 ft . wide. Then calculate its perimeter.

Exercise 4. Suppose a triangle has side lengths 5, 10, and 7. What's its perimeter?

(B2) Area of a Rectangle

The area of a two-dimensional shape (like a rectangle, or a triangle, or a circle) is the amount of two-dimensional space inside it.

Exercise 5. The area A of a rectangle with length ℓ and width w is given by the following formula:

$$
A=\ell \cdot w
$$

The units that measure area are SQUARE UNITS. For example, if a room's dimensions are given in FEET (ft.), then the area is given in SQUARE FEET (sq. ft. or $\mathrm{ft}{ }^{2}$).

- Find the area of the bedroom pictured below (12 feet on all sides). Don't forget the units!
- Find the area of the living room pictured below (12 feet long, 15 feet wide).

Exercise 6. Draw a square with side length 16 inches (in.). Then find its area.

Exercise 7. Divide the square you drew in Exercise 6 in half with a diagonal line. What's the area of each triangle?

Exercise 8. Suppose that a rectangular bedroom is 12 feet long and 10 feet broad.

- What's the area of the bedroom?
- An 1865 report by the British government stated that a rented one-bedroom house in Bedfordshire County, England housed a working-class married couple and six children. ${ }^{1}$ Suppose all eight residents shared a single $12^{\prime} \times 10^{\prime}$ bedroom. If they equally divided the bedroom's floor-space, how much floor-space did each person get?
- (Challenge:) Assume the ceiling in the bedroom was $5 \frac{1}{2}^{\prime} \mathrm{ft}$. tall. How much three-dimensional space (that is, how much volume, in cubic feet) did each person get?
- An engaging exploration of how many humans can comfortably occupy a given amount of space can be found at this link: "7.3 Billion People, One Building"

The formula for the area of a triangle is

$$
A=\frac{1}{2} b h
$$

where h is the triangle's height and b is the length of its base.

Exercise 9. Round to the nearest tenth, if needed.
(a) Find the area of a triangle with $b=20 \mathrm{in}$. and $h=9 \mathrm{in}$.
(b) Find the area of a triangle with $b=7 \mathrm{~cm}$ and $h=11 \mathrm{~cm}$.

[^0]Exercise 10. Perimeter or area?
(a) A fence around the border of a plot of land
(b) New carpet for a bedroom
(c) Paint for a bedroom wall
(d) Wood molding for a picture frame

(B5) Area and Circumference of Circles

The area A of a circle is given by the formula

$$
A=\pi r^{2}
$$

where r is the radius.
$4 \approx$ Notice the "squared" in the formula for area, which is measured in SQUARE UNITS.

The circumference C of a circle is given by the following formula:

$$
C=2 \pi r
$$

The circumference is the "distance around" the circle.
For example, if a kid swings a ball on a string in a circle (image at right), then the distance traveled by the ball in one complete revolution is the circumference.

4 An alternate version of the formula for circumference is

$$
C=\pi d
$$

where $d=2 r$ is the circle's diameter.

Exercise 11.

(a) Find the area and circumference of a circle with radius 16 in .
(b) Find the area and circumference of a circle with diameter 12 cm .
(c) Find the area and circumference of a circle with radius 25 miles (mi.).

[^0]: ${ }^{1}$ Parliament public health report cited in Marx, Capital, Vol. 1, Ch. 25, S. 5(e)

