
Ch. 1. Voting theory

As a college student, the mathematician Kenneth Arrow studied both social science and mathematics. He later became
known for applying mathematical reasoning to real-world problems that at first might seem quite unrelated to math. We
begin by quoting his most celebrated discovery.

Arrow’s Impossibility Theorem

No method for determining the result of an election involving three or more candidates
is both democratic and consistently fair.

Now, a theorem is a mathematically precise result that can be proven to be true. For example, you may recall the
Pythagorean Theorem1 from high school. We will not “prove” Arrow’s theorem, but after completing Chapter 1, you
should be able to convince yourself that Arrow’s theorem is in fact true.

1. Preference ballots and preference schedules

Ex.: Mathematics Appreciation Society.
Suppose an election is held for the President of the Math Appreciation Society at Tasmania State University, and the
following 37 ballots are collected. Each voter has been asked to rank their choices of candidate Alice, Boris, Carmen,
and Dave with the numbers 1st, 2nd, 3rd, and 4th. What’s the best way to decide who won?

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st B
2nd D
3rd C
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st B
2nd D
3rd C
4th A

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st B
2nd D
3rd C
4th A

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st B
2nd D
3rd C
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st C
2nd D
3rd B
4th A

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st A
2nd B
3rd C
4th D

1If c is the length of the side opposite the right angle in a right triangle, and if a and b are the lengths of the other two sides of the triangle,
then a2 + b2 = c2. Your high school teachers probably did not prove this theorem, but on the Internet, the interested student can easily find
hundreds of di↵erent arguments (or proofs) which demonstrate that the theorem is true for all right triangles. (Try “proof pythagorean
theorem” on your favorite search engine.)



First, we organize the ballots.

There are only a handful of possible ways to fill out the ballot. If we stack identical ballots together, we see that there
were 5 di↵erent ballots in the election.

Ballot
1st A
2nd B
3rd C
4th D

Ballot
1st C
2nd B
3rd D
4th A

Ballot
1st D
2nd C
3rd B
4th A

Ballot
1st B
2nd D
3rd C
4th A

Ballot
1st C
2nd D
3rd B
4th A

14 10 8 4 1

The following table summarizes what we have done.

1st choice A C D B C
2nd choice B B C D D
3rd choice C D B C B
4th choice D A A A A
number of voters: 14 10 8 4 1

Such a table is called a preference schedule for the election. From now on, all elections will be given in the form of a
preference schedule.

Before we decide who won this election, we define a few more vocabulary terms. A ballot in which the voters must rank
their choices is called a preference ballot. A ballot in which ties are not allowed is called a linear ballot. (So the
Math Appreciation Society ballots are linear preference ballots.) We will only consider linear preference ballots in this
Chapter.

If a voter prefers A over B, and also prefers B over C, it naturally follows that this voter prefers A over C. This fact is
called the transitivity of voter preferences. This seemingly trivial fact will be used throughout the Chapter. Whenever
a candidate is eliminated from a preference ballot, we simply move up all the lower ranked candidates to fill the gap (p. 5,
Fig. 1-4).

2. Plurality method—Majority Criterion—Condorcet Criterion—Insincere voting

One way to decide the result of the Math Appreciation Society election is to declare that the candidate with the greatest
number of 1st place votes is the winner. We call this the plurality method for deciding the election. We say that the
candidate who receives the most 1st place votes has received the plurality.

Discarding all 2nd, 3rd, and 4th place votes, we see that Alisha wins:

1st choice A C D B C
number of voters: 14 10 8 4 1

Alisha: 14 first place votes
Boris: 4 first place votes
Carmen: 11 first place votes
Dave: 8 first place votes

Is there anything unfair about awarding the election to Alisha? Her detractors might notice that 10 + 8 + 4 + 1 = 23
voters chose someone else as their first choice. Significantly more voters opposed Alisha than supported her!

If a candidate receives at least half of the 1st place votes, we call him or her the majority candidate. (Notice that a
majority candidate always has the plurality of votes, i.e.2 more than anyone else.)

2The abbreviation i.e. means “that is.” The abbreviation e.g. means “for example.” You will not be tested on these abbreviations of the
Latin phrases id est and exempli gratia.



If there are only 2 candidates, and we use the plurality method to decide who won, the winner will necessarily be the
majority candidate. But when there are 3 or more candidates, the plurality may be less than half, as has happened several
times in U.S. presidential elections.

candidate in 1824 election percent of electoral votes won
Andrew Jackson 37.9%

John Quincy Adams 32.2%
William Crawford 15.7%

Henry Clay 14.2%

A fundamental principle of a fair democratic election is that, if there is a majority candidate, then that candidate should
be the winner.

Majority Criterion

If Candidate X has a majority of the first-place votes,
then Candidate X should be the winner of the election.

This is the first of the four Fairness Criteria we shall study in this Chapter. In every election that is decided using the
plurality method, the Majority Criterion holds true.

We say that a voting method satisfies a Fairness Criterion if the Criterion holds true for every election decided by that
method. Clearly, the plurality method satisfies the Majority Criterion.

We say that a method violates a Fairness Criterion if it is possible to have an election in which the Criterion is false. Be
careful with this definition!!! It does not mean that the Criterion must be false. It only says that it’s possible to have an
election in which it is false.

Explain in your words what it means for a voting method to violate the Majority Criterion.



Ex.: Marching band (1).
The marching band at Tasmania State University has been invited to perform at five di↵erent bowl games: the Rose
Bowl, the Hula Bowl, the F iesta Bowl, and the Orange Bowl. The following preference schedule shows the results of an
election held among the 100 members of the band.

number of voters: 49 48 3
1st choice R H F
2nd choice H S H
3rd choice F O S
4th choice O F O
5th choice S R R

Who wins by the plurality method? How many voters did not choose the winner as their first choice? Using common
sense alone, who ought to be the winner?

Compare the winner to each of the other candidates in the following table in a head-to-head comparison, counting only
1st place votes.

H R 51–49
H F
H O
H S 100–0

A candidate that is preferred over each of the other candidates in a head-to-head race is called the Condorcet candidate.
Note that not every election has a Condorcet candidate.

In 1785, the Marquis of Condorcet proposed the following Fairness Criterion.

Condorcet Criterion

If Candidate X is preferred over each other candidate in a head-to-head race,
then Candidate X should be the winner of the election.

We may now summarize some of the advantages and disadvantages of the plurality method.

Pros:
• It is simple to decide who won
• Satisfies the Majority Criterion

Cons:
• Does not consider voter’s 2nd, 3rd, etc., choices
• Results may easily be manipulated by insincere voters
• the Condorcet Criterion

Let’s look at the second “con” listed above. Have you ever considered voting for a third-party candidate? If the candidate
had little to no chance of winning, you might have wondered whether you would be “wasting your vote.” Some voters will
vote against their favorite candidate, and instead vote for a candidate who is more likely to win. We call this insincere



voting.3 In a close election, relatively few insincere voters can dramatically change the results.

Ex.: Marching band (2).
Consider the marching band example. Three of the band members, the Dorsey triplets, prefer the Fiesta Bowl, but they
realize that there is no chance that the Fiesta Bowl will win. Reasoning that they would be “wasting their vote,” the
Dorsey triplets cast their votes for the Hula Bowl instead.

Real preferences

number of voters: 49 48 3 Dorseys
1st choice R H F
2nd choice H S H
3rd choice F O S
4th choice O F O
5th choice S R R

Votes cast

number of voters: 49 48 3 Dorseys
1st choice R H H

2nd choice H S F

3rd choice F O S
4th choice O F O
5th choice S R R

The 3 Dorseys have completely changed the outcome of the election: now the Rose Bowl loses, and the Hula Bowl
wins.

We see that, if the plurality method is used to decide the winner, voters are pressured to vote for one of only two
candidates, since voters may conclude that, “All votes for anyone other than the second place are votes for the winner.”4

Duverger’s Law states that the plurality method necessarily leads to a two-party system, given enough time. As you
may recall, the following two elections were characterized by some as unfair insofar as a third-party candidate became a
“spoiler.”

1992 presidential election

candidate percent of popular vote
Bill Clinton 43.0%

George H. W. Bush 37.4%
Ross Perot 18.9%

2000 presidential election

candidate percent of popular vote
George W. Bush 47.9%

Al Gore 48.4%
Ralph Nader 2.7%

Pat Buchanan 0.4%

Can you devise a method for deciding the winner of an election which does not pressure voters to vote for one of the two
leading candidates?

3A.k.a. strategic or tactical voting.
4Quote taken from Wikipedia, “Plurality voting system,” http://en.wikipedia.org/wiki/First-past-the-post.



3. The Borda count method

Ex.: Sportswriters’ polls
Sportswriters are regularly asked to rank teams in most major sports. Suppose a poll is conducted in which 7 writers are
asked to rank 3 college basketball teams from best to worst, and the preference schedule is:

rank order
1st (best) C A A

2nd A C B
3rd (worst) B B C

number of voters: 4 1 2

A: Gonzaga College, B: Clemson College, C: The Citadel

How should we decide the results of this poll?

We can assign each rank from 1st to 3rd a certain number of points, as follows.

1st 3 pts.
2nd 2 pts.
3rd 1 pts.

Notice that if there are N candidates or choices, then 1st place is worth N points, 2nd is worth N � 1 points, etc., and
last place is always worth 1 point.

The number of points will have to be multiplied by the number of ballots in each stack of identical ballots. Use a table
to organize your work as you total up the points earned by each team, as shown.

1st (best) C : 4⇥ 3 = 12 A : 1⇥ 3 = 3 A : 2⇥ 3 = 6
2nd A : 4⇥ 2 = 8 C : 1⇥ 2 = 2 B : 2⇥ 2 = 4

3rd (worst) B : 4⇥ 1 = 4 B : 1⇥ 1 = 1 C : 2⇥ 1 = 2
number of voters: 4 1 2

A: Gonzaga College, B: Clemson College, C: The Citadel

Now tally up the points for each team:

A gets 8 + 3 + 6 = 17 points.

B gets 4 + 1 + 4 = 9 points.

C gets 12 + 2 + 2 = 16 points.

We call this method the Borda count method. The candidate or choice with the most points is called the Borda
winner.

Now try one on your own!



Ex.: A school principal selection goes awry (p. 11, Ex. 1.6)
The four finalists for the job of school principal at Washington Elementary school are Mrs. Amaro, Mr. Burr, Mr. Castro,
and Mrs. Dunbar. Each of the 11 school board members gets to rank the candidates, and the Borda winner gets the job.
The preference schedule for this election is reproduced here:

rank order
1st choice A: B: C:

2nd choice B: C: D:

3rd choice C: D: B:

4th choice D: A: A:

number of voters: 6 2 3

(a.) Who gets the job?

(b.) Who is the majority candidate?

(c.) Who is the Condorcet candidate?

We see that the Borda count method

(c.) satisfies / violates the Majority Criterion.

(d.) satisfies / violates the Condorcet Criterion.



4. Plurality-with-elimination method

Some municipalities require that a candidate obtain a majority of the first-place votes to be elected. When there are
three or more candidates, quite often there is no majority candidate.

A run-o↵ election is typically held at this point: the last place candidate is eliminated from the ballot, and a new election
is held.

The plurality-with-elimination method (a.k.a. instant runo↵ voting, the Hare method) is a more e�cient way to
implement the same process. This method has become somewhat of a trend in recent years.

Voters fill out a preference ballot so that they do not need to vote over and over. From the original preference schedule,
we eliminate the candidates with the fewest first-place votes one at a time until one of them gets a majority. (How do
we know this must eventually happen?)

Plurality-with-elimination method

• Round 1.
Count the first-place votes for each candidate. If a candidate has a majority
of first-place votes, then that candidate is the winner. Otherwise, eliminate the
candidate (or candidates if there is a tie) with the fewest last-place votes.

• Round 2.
Cross out the names of any candidates eliminated from the preference schedule,
and recount the first-place votes. If a candidate has a majority of first-place
votes, then that candidate is the winner. Otherwise, eliminate the candidate (or
candidates if there is a tie) with the fewest last-place votes.

• Round 3.
Repeat Round 2 until a winner is found.

Ex.: Homecoming Queen election (p. 34, #28)
Find the winner of the election under the plurality-with-elimination method.

rank order
1st choice A A A B B B C C D D

2nd choice C B D D C C A B A B

3rd choice B D C A D A D A C C

4th choice D C B C A D B D B A

number of voters: 153 102 55 202 108 20 110 160 175 155



The following example shows that the plurality-with-elimination method has serious, but quite subtle problems.

Ex.: A mess of Olympic proportions
The cities of Athens, Barcelona, and Calgary are competing to be the host city for the 2020 Olympics. A secret vote of
the 29 members of the Executive Council of the International Olympic Committee is to be held.

Two days before the actual election, a straw poll5 is held. Here is the preference schedule for the straw poll.

1st choice A B C A
2nd choice B C A C
3rd choice C A B B

number of voters: 7 8 10 4

Who wins the straw poll by the method of plurality-with-elimination?

When word gets out that Calgary is favored to win the election, the four delegates represented by the rightmost column
of the straw poll’s preference schedule decide to switch their votes and vote for Calgary first. Here is the preferences
schedule for the actual election.

1st choice A B C
2nd choice B C A
3rd choice C A B

number of voters: 7 8 14

Who wins the actual election by the method of plurality-with-elimination?

5A straw poll is an uno�cial vote or poll indicating the trend of opinion on a candidate or issue.



Monotonicity Criterion

If Candidate X is the winner of an election
and, in a re-election, the only changes in the ballot are changes that favor X and only X,

then Candidate X should be the winner of the re-election.

The plurality-with-elimination method violates both the Monotonicity Criterion and the Condorcet Criterion.

5. The method of pairwise comparisons—Counting pairwise comparisons

So far all the voting methods we have seen violate the Condorcet Criterion. The next method we will study is the classic
example of one that does not violate it.

The method of pairwise comparisons is like a round-robin tournament in which each candidate is matched head-to-head
against each other candidate. Each head-to-head match is called a pairwise comparison.

For each pairwise comparison that Candidate X wins, Candidate X receives 1 point. If there is a tie, each candidate
receives 1/2 point. The winner by the method of pairwise comparisons (a.k.a. Copeland’s method) is the candidate
who receives the most points.

This method obviously satisfies the Condorcet Criterion. (Why?)

It also satisfies both the Majority Criterion and the Monotonicity Criterion.

Unfortunately, the method of pairwise comparisons does violate a fourth Fairness Criterion, which we will soon introduce.
First, we look at an example.

Ex.: The NFL draft (p. 19, Ex. 1.12)
A new expansion team, the Los Angeles LAXers, has been added to the NFL, and hence gets the opportunity to choose
first in the upcoming draft. The coaches and team executives narrow the list of candidates to five players: Allen, Byers,
Castillo, Dixon, and Evans. By team rules, the choice must be made by the method of pairwise comparisons. Here is
the preference schedule after the 22 voters (coaches, scouts, and executives) turn in their preference ballots.

1st choice A B B C C D E
2nd choice D A A B D A C
3rd choice C C D A A E D
4th choice B D E D B C B
5th choice E E C E E B A

number of voters: 2 6 4 1 1 4 4

Who is the newest member of the team?



Now suppose Castillo is eliminated from the original preference schedule. We have the following new preference sched-
ule.

1st choice A B B B D D E
2nd choice D A A A A A D
3rd choice B D D D B E B
4th choice E E E E E B A

number of voters: 2 6 4 1 1 4 4

Now who wins?

Independence-of-Irrelevant-Alternatives (IIA) Criterion

If Candidate X is the winner of an election
and, in a re-count, one of the non-winning candidates is removed from the ballots,

then Candidate X should be the winner of the re-election.

A practical problem with the method of pairwise comparisons is that, as the number of candidates grows, the number
of pairwise comparisons explodes. For 5 candidates we have 10 pairwise comparisons. For 10 candidates we have 45
pairwise comparisons. For 100 candidates we have 4, 950 pairwise comparisons. Computing all these comparisons would
not be fun.

We want to be able to count how many pairwise comparisons there are, given the number of candidates. We start by
developing a mathematical formula that at first seems unrelated.

Ex.: Long sums made short (p. 22, Ex. 1.14)
What is the sum of the first 49 counting numbers?6

6The counting numbers (a.k.a. natural numbers) are the positive whole numbers: namely, the numbers 1, 2, 3, 4, . . . .



Do you believe that the order doesn’t matter when we add a list of numbers? For example, 1+2+3 = 3+2+1. Convince
yourself that a list of numbers can be added in any order whatsoever, and the resulting sum is always the same.

To sum up the first 49 counting numbers, we will use a clever trick. Let S stand for the sum: that is,

S = 1 + 2 + 3 + · · · + 48 + 49.

Then

2⇥ S = S + S = (1 + 2 + 3 + · · · + 48 + 49) + (49 + 48 + · · · + 3 + 2 + 1)
= (1 + 49) + (2 + 48) + (3 + 47) + · · · + (48 + 2) + (49 + 1),

since order doesn’t matter when we add a list of numbers.

Now, it is obvious that each of the 49 sums of two numbers (1 + 49), (2 + 48), (3 + 47), . . . , (49 + 1) is equal to 50. (A
picture can make what is “obvious” a little easier to see! What does each vertical bar represent? What does the shading
of the bars represent?)

Out[136]=

The number of squares in this rectangle is
2S = 49⇥ 50,

where we have gotten the right hand side 49⇥ 50 by calculating the rectangle’s area (width ⇥ height).

But what we want is S, so we divide this number by 2 to get what we’re looking for:

S =
49⇥ 50

2
= 1225 .

In general,

The sum of the first L counting numbers is

1 + 2 + 3 + · · · + L =
L⇥ (L + 1)

2
.



Now, how many pairwise comparisons are involved when there is an election with L candidates? To fix ideas, we will look
at a numerical example.

Ex.: Counting pairwise comparisons. (p. 22, Ex. 1.15)
Consider an election with 10 candidates, A, B, C, D, E, F , G, H, I, and J .

Let’s count all the pairwise comparisons.

• Compare A against the 9 candidates B, C, D, E, F , G, H, I, J .

• Compare B against the 8 candidates C, D, E, E, F , G, H, I, J .
...

• Compare H against the 2 candidates I, J .

• Compare I against the 1 candidate J .

There are a total of
9⇥ (9 + 1)

2
= 45 pairwise comparisons in an election with 10 candidates.

(Do you see why we used L = 9 and not L = 10?)

The number of pairwise comparisons

in an election between N candidates is 1 + 2 + 3 + · · · + (N � 1) =
(N � 1)⇥N

2
.



6. Rankings—Recursive ranking

Each of the methods we have seen thus far can be extended to decide not only the winner, but 2nd place, 3rd place, and
so on. We call the assignment of 2nd place, 3rd place, etc., a ranking of the candidates.

Recall that, for the plurality method, 1st place is the candidate with the most first-place votes For the extended plurality
method, 2nd place is the candidate with the second most first-place votes, 3rd place is the candidate with the third most
first-place votes, and so on.

For the extended Borda count and for extended pairwise comparisons, 2nd place is the candidate with the second most
points, and so on.

For the extended plurality-with-elimination method, the candidates are ranked in the reverse order of elimination.

Another way to extend the methods we have seen is by repeatedly applying the method and removing the winner of each
round. We call this recursive ranking.

For example, if A, B, C, and D compete in an election decided by Borda count, and A receives the most points, then
A is ranked 1st place, and we remove A from the list of candidates, obtaining a new preference schedule. We then hold
a second round using the new preference schedule. The winner of this second round is awarded 2nd place and removed,
and the process repeats until every candidate has been ranked.



HW emendation: SKIP problems #41, 45, 49 in Ch. 3.

Ch. 3. Fair division

1. Fair division games

The essential parts of any “fair division game”:

• S: the set of things, collectively called the booty (or goods, or loot), to be divided

• P1, P2, P3, . . . : the players who share the booty

• a value system for each player that determines how much any part of S is worth to that player personally

Assumptions about the players:

• Rationality: Each player seeks to maximize his or her share of S, and pursues this goal guided by reason alone.

• Cooperation: All players agree to play by the rules of whichever division game is chosen.

• Privacy: No player has any useful information about the other players’ value systems.

• Symmetry: Players have equal rights in sharing S: that is, every player is entitled to a proportional share of S.

Suppose there are N players amongst which to divide the booty. The purpose of a fair division game is to divide S into
N shares and assign a share to each player in such a way that every payer gets a “fair share.” So what constitutes a fair
share?

A share s of the booty S is called a (proportional) fair share to player P if s is worth at least
1
N

of the total value of

S in the opinion of P .

Ex.
Suppose that there are 4 players, and that the booty S consists of a 1972 Fender Stratocaster electric guitar together with
an amplifier, a Steinway grand piano in poor condition, a 1983 Buick sedan together with an assortment of air fresheners,
and a baseball card collection that includes a Mark McGwire card from his rookie year. Further suppose that to Paul,
one of the four players, each of these items is worth a certain percentage of the booty’s total value, as follows:

s1: guitar, amplifier 40%
s2: piano 10%
s3: sedan, air fresheners 20%
s4: baseball card collection 30%

Note that these the values of these four shares in Paul’s mind: the sedan may be less valuable than the piano to someone
else, but possibly Paul only knows how to play guitar, and thus has little use for a piano in rough shape.

Which of the four shares s1, s2, s3, s4 is a fair share to Paul?



A fair division method is a set of rules that define how a game is played, where the game ends once each player has
been assigned a share of the booty S.

Di↵erent fair division methods are used depending on what type of booty we have to divide among the players. In
particular, depending on the nature of the set S, a fair division method is called discrete, continuous, or mixed.

• In a discrete fair division game, the booty S is made up of indivisible objects. E.g. a piano, a car, a diamond ring,
a piece of candy.

• In a continuous fair division game, the booty S can be divided in infinitely many di↵erent ways, and a share can
be made larger or smaller by any any small amount. E.g. a birthday cake, a pizza, the space in a storage unit, a
plot of land.

• In a mixed fair division game, the booty S is made up of both discrete and continuous components.

Note that we make the standing assumption that pieces of candy are “indivisible” (although in theory we could cut a
piece of candy into as small pieces as we like). The same goes for pieces of jewelry (although these could in theory be
melted down).

2. Two players: The divider-chooser method

The divider-chooser fair division method can be used when there are two players, and S is continuous. If we use a cake
as a metaphor for the booty, we can summarize the rules of this game as follows: You cut, I choose. In detail, Player
One, called the divider, divides the cake in two. Then Player Two, the chooser, chooses one of the two pieces.

Ex.
See p. 88, Ex. 3.1: “Damian and Chloe divide a cheesecake.”

It is always better to be the chooser than the divider, because the chooser always has an opportunity to choose a piece
worth more than one-half of the total.

On the other hand, this method is fair, because the divider is guaranteed a piece worth exactly one-half of the total.
(Why?)



#14a (p. 114).
Raul and Karli are planning to divide the chocolate-strawberry mousse cake in the figure using the divider-chooser method.
Raul values chocolate three times as much as he values strawberry. Karli values chocolate twice as much as she values
strawberry.

If Raul is the divider, which of the following cuts are consistent with Raul’s value system?

Question:
Is cut (iii) consistent with Raul’s value system?

Solution:

piece comparative worth

Chocolate:
60�

360�
⇥ 3 =

180�

360�
=

1
2

Strawberry:
180�

360�
⇥ 1 =

180�

360�
=

1
2

TOTAL WORTH: 1

Chocolate:
120�

360�
⇥ 3 =

360�

360�
= 1

TOTAL WORTH: 1

Answer :
Yes. The two pieces have the same comparative worth, according to Raul’s value system.

Notice the meaning of the columns in the chart below:

proportion of booty value multiplier

Chocolate:
60�

360�
⇥ 3 =

180�

360�
=

1
2

Strawberry:
180�

360�
⇥ 1 =

180�

360�
=

1
2

TOTAL WORTH: 1



Question:
Is cut (iv) consistent with Raul’s value system?

piece comparative worth



Question:
Is cut (v) consistent with Raul’s value system?

piece comparative worth



Question:
Is cut (i) consistent with Raul’s value system?

piece comparative worth



Question:
Is cut (ii) consistent with Raul’s value system?

piece comparative worth



3. Lone divider method

The divider-chooser method does not make sense if there are 3 players. However, in this case, the method can be
extended, as the Polish mathematician Hugo Steinhaus discovered. Steinhaus’s idea was later extended to any number
N of players. We call this extension for N players the lone-divider method. Let’s look at the lone-divider method for
exactly 3 players.

• Randomly choose one of the players to be the divider. The other players will be choosers.

• The divider cuts the cake S into three pieces. The divider will get one of these pieces, but does not know which
one, and therefore cuts the cake into three shares that he thinks are equal in value.

• The first chooser, C1, declares which shares are fair shares to her (perhaps by writing this information down on a
slip of paper). We call this declaration C1’s bid. Since C1 is not guaranteed that she will get one of these shares,
it is in her interest to write down all shares she considers fair, not only the best share.

• The second chooser, C2, does the same thing. Note that C1 and C2 do not know each others’ bids.

• Separate out all the pieces of S that do not appear on either bid list. We will call these U-pieces (for unwanted).
Note that, for both choosers, a U -piece is valued at less than 1/3 of the total value.

• What’s left is all the pieces of S that appear on at least one of the two bid lists. We call these C-pieces (for
chosen). Note that there is always at least one C-piece.

Case 1: There are two or more C-pieces.

See the examples (3.2 and 3.3 in the book, pp. 91-92) to follow.

Case 2: There is only one C-piece.

If the two choosers agree that one of the U -pieces is least desirable, give it to the divider.

If the choosers do not agree, pick a U -piece randomly, and give it to the divider.

There are now two pieces left, a U -piece and a C-piece. Combine these into one single
piece.

Use the divider-chooser method to divide this new single piece into two shares for the two
choosers.

Ex.
p. 91, Ex. 3.2: “Lone-divider with 3 players: Case 1, Version 1.”

s1 s2 s3

Dale 33 1
3% 33 1

3% 33 1
3%

Cindy 35% 10% 55%
Cher 40% 25% 35%

Ex.
p. 92, Ex. 3.3: “Lone-divider with 3 players: Case 1, Version 2.”

s1 s2 s3

Dale 33 1
3% 33 1

3% 33 1
3%

Cindy 30% 40% 30%
Cher 60% 15% 25%

Ex.
p. 92, Ex. 3.4: “Lone-divider with 3 players: Case 2.”

s1 s2 s3

Dale 33 1
3% 33 1

3% 33 1
3%

Cindy 20% 30% 50%
Cher 10% 20% 70%



We will now look at some problems involving the lone-divider method which you will be expected to know how to solve.
Many of our problems (involving the lone-divider method) fall into one of the following categories:

• Find a fair division (i.e. each player’s fair share), given all N players’ bid lists.

• Reconstruct the bid lists, given the values of each share to each player.

• Count the number of fair divisions, and explain how you figured out how many there are.

You may solve these problems in any way you like. We will demonstrate some e↵ective ways to organize your work.

#22a (p. 116).
Four partners, DiPalma, Childs, Choate, and Chou are dividing a piece of land among themselves using the lone-divider
method. Using a map, the divider DiPalma divides the property into three pieces s1, s2, s3, s4. When the choosers’
bid lists are opened, Child’s bid list is {s2, s3}, Choate’s bid list is {s3, s4}, and Chou’s bid list is {s4}. Describe a fair
division of the land.

Solution:

Answer :



#27a (p. 116).
Six players D, C1, C2, C3, C4, C5 are dividing a cake among themselves using the lone-divider method. D cuts the cake
into 6 slices s1, s2, s3, s4, s5, s6. When the choosers’ bid lists are opened, C1’s bid list is {s2, s3, s5}, C2’s bid list is
{s1, s5, s6}, C3’s bid list is {s3, s5, s6}, C4’s bid list is {s2, s3}, and C5’s bid list is {s3}. Describe a fair division of the
cake.

Solution:

s1 s2 s3 s4 s5 s6

C1 � � �x
C2 �x � �
C3 � � �x
C4 �x �
C5 �x
D � � � �x � �

#29b (p. 116).
Four partners, Egan, F ine, Gong and Hart are dividing a piece of land valued at $480, 000 among themselves using the
lone-divider method. Using a map, the divider divides the property into four pieces s1, s2, s3, s4. The following table
shows the value of each of the piece in each partner’s eyes, but some entries in the table are missing.

s1 s2 s3 s4

E 80 85 195
F 100 135 120
G 120 120
H 95 100 110

Numbers in thousands of dollars.

Describe the choosers’ respective bid lists.



4. Lone-chooser method

The lone-chooser method is another way to extend the divider-chooser method to three or more players. We first look at
the case where the number of players is N = 3.

Lone-chooser method for N = 3 players.

• (Setup.) Randomly choose one of the players to be the chooser. The other players will be dividers.

• (Division.) Using the divider-chooser method, the N � 1 = 2 dividers

D1 and D2

divide the booty S among themselves into two fair shares. Let’s say that D1 ends up with s1, and that D2 gets s2.

• (Subdivision.) Each divider splits his or her share into N = 3 subshares. Let’s call the three subshares of s1 by
the names s1a , s1b , s1c .

• (Selection.) The chooser C now takes one of D1’s subshares, and one of D2 subshares. These N�1 = 2 subshares
make up C’s final share. D1 keeps the remaining subshares from s1, and D2 keeps the remaining subshares from
s2.

s1

s2

s1a

s1b

s1c

s2

s1a

s1b

s1c

s2a

s2b
s2c

s1a

s1b

s1c

s2a

s2b
s2c

Notice that we used a di↵erent fair division method (namely, the divider-chooser method) to fairly divide the booty among
the N � 1 = 2 dividers.

When N = 4, we can use the lone-chooser method for 3 players to fairly divide the booty among the N � 1 = 3
dividers.

In general, for any number N � 4 of players, if we know how to fairly divide the booty among N � 1 dividers by any
method whatsoever, we can apply the following method to fairly divide the booty among N players.

Lone-chooser method for N � 4 players.

• (Division.) Using any method whatsoever, the N � 1 dividers

D1, D2, D3, . . . , DN�1

divide the booty S among themselves into N � 1 fair shares. By definition of a fair share, each player ends up
having claimed a share they consider to be worth 1

N�1 of the total value of S.

• (Subdivision.) Each divider splits his or her share into N subshares.

• (Selection.) The chooser C now takes one subshare from each divider’s share. These N � 1 subshares make up
C’s final share. D1 keeps the remaining N � 1 subshares from s1, D2 keeps the remaining N � 1 subshares from
s2, and so on.



Activity.
“More cake cutting,” Instructor’s Resource Manual, pp. 18-21.

Required homework problems—TEACHER

Ch. 1. Mathematics of voting, §§1.1–1.6.

A. Ballots and preference schedules 1, 3, 7
B. Plurality method 11, 13, 15
C. Borda count method 17, 19, 23, 25
D. Plurality-with-elimination method 27, 29, 33
E. Pairwise comparisons method 35, 37, 39
F. Ranking methods 41, 47
G.

PN
k=1 k =? 51-54

Fairness criteria 59
JOG. Monotonicity criterion 63, 65

Plurality-with-elimination extended 73

Ch. 3. Fair division, §§3.1–3.7 except 3.5.

A. Shares, fair shares, fair divisions 1, 3, 5, 9
B. Divider-chooser method 11, 13, 15
C. Lone-divider method 19, 23, 29
D. Lone-chooser method 31, 35, 39
E. Last-diminisher method 41, 45, 49
F. Method of sealed bids 51, 55, 57
G. Method of markers 59, 61, 67

JOG. Method of sealed bids 78

Ch. 5. Euler circuits, §§5.1–5.7.

A. Graphs: Basic concepts 1, 3, 7, 11
B. Graph models 17, 19, 20
C. Euler’s theorems 21, 23
D. Finding Euler circuits and Euler paths 27, 29, 33, 35
E. Unicursal tracings 37, 39
F. Optimal (semi-)Eulerizations 41, 43
G. Extension of #19 51

Extension of #20 52
JOG. Optimal circuit on weighted graph 58

OMIT #41, 45, 49



6. Method of sealed bids

The method of sealed bids is a discrete fair division. It includes five steps.

1. (Bidding.) Each player makes a bid in dollars for each of the items in the booty, giving her honest opinion of the
worth relative to her value system.

2. (Allocation.) Each item goes to the individual with the highest bid. If there is a tie, then some means such as a
coin flip is used to randomly determine who obtains the share. Note that it is possible that one player may end up
with most or all of the shares according to this method.

3. (First Settlement.) We determine whether each player owes or is owed money by the estate. To determine this
we first calculate each player’s fair-dollar share of the estate.

A player’s fair-dollar share is computed by adding that player’s bids, and dividing the total by the number of
players N . If the fair-dollar share is less than the fair share of the dollar worth of the estate, then the player is owed
the di↵erence. Otherwise, the player owes the di↵erence (in cash) to the estate.

The process of deciding how much each player owes or is owed is called settling up.

4. (Division of Surplus.) If there is a surplus of cash after settling up, then the amount is divided evenly among the
players.

5. (Final Settlement.) The final settlement is determined by adding the surplus found in step 4 and the amount
allocated in step 3.

The method of sealed bids works well if the following to conditions are met.

• Each player must have enough money to play the game. If a player has no means of obtaining cash or credit then
they are at a disadvantage.

• Secondly, each player must accept money as a substitute for any particular item. This means that no player can
value items as priceless.



Ex.
Suppose that 5 siblings (Daniel, Bob, Jeni, Karla, Ashlie, Tung) wish to divide fairly and equally their parents estate.
Their parents leave them 4 items: a baseball card collection, a Model T Ford, the house, and a dog named Bubbles. We
will use the method of sealed bids to fairly and evenly divide the estate among the 5 kids, even though we only have 4
items!

1. (Bidding.) Each player makes a bid in dollars for each of the items in the booty, giving her honest opinion of the
worth relative to her value system.

2. (Allocation.) Each item goes to the individual with the highest bid.

Daniel Bob Jeni Karla Tung
Card Collection 200, 000 180, 000 10, 000 100, 000 105, 250
Model T 10, 000 300, 000 20, 000 162, 000 105, 250
House 100, 000 125, 000 300, 000 133, 000 105, 250
Bubbles 290, 000 296, 000 210, 000 0 105, 250
TOTAL 600, 000 601, 000 540, 000 395, 000 421, 000
Fair Dollar Share 120, 000 120, 200 108, 000 79, 000 84, 200

Numbers in thousands of dollars.

3. (First Settlement.) We determine whether each player owes or is owed money by the estate. To determine this we
first calculate each player’s fair-dollar share of the estate. A player’s fair-dollar share is computed by adding that
player’s bids, and dividing the total by the number of players N . If the fair-dollar share is less than the fair share
of the dollar worth of the estate, then the player is owed the di↵erence. Otherwise, the player owes the di↵erence
(in cash) to the estate.

4. (Division of Surplus) If there is a surplus, then the amount is divided evenly among the players.

5. (Final Settlement) The final settlement is determined by adding the surplus found in step 4 and the amount
allocated in step 3.



7. Method of sealed bids

The Method of Markers is a discrete fair division. The k items in the booty will be lined up in a random order (see
p. 106). We call this lineup of items an array of items.

We’ll say that the leftmost item is in Position 1, and that the rightmost position is in Position k, and similarly for the
Positions 2, 3, 4, . . . , k � 1 in between.

Each of the N players places N � 1 markers that represent their idea of a fair share. The N � 1 markers divide the array
into N portions (or segments).

# # #
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

3 markers partition an array into 4 segments.

Each person’s bids are still considered secret! (For example, we might ask each player to write down their bids on a list,
as we did in the lone-divider method.)

This method ensures that each player will end up with at least one of their bid segments, which means everyone obtains
a fair share of the booty.

The method of sealed bids is carried out as follows.

1. (Bidding.) Each player writes down where she wants her N � 1 markers.

2. (Allocation.) Scan the array from left to right. Stop when the first marker comes up. The player who placed that
marker receives the first segment in her bid (i.e. all items to the left of her marker).

Continue this process, scanning from left to right, stopping when a player’s marker is reached, and giving the
leftmost segment to that player.

If two players have placed a marker in the same position, flip a coin or use some other means of randomly deciding
who gets the leftmost segment.

3. (Division of Leftovers.) Any leftover pieces are distributed randomly, e.g. by drawing straws.1

What would you say are the advantages of this method?

What are some disadvantages?

1Or stones, etc.: we call this ancient method drawing lots, and it appears in the Christians’ New Testament: “And they parted his clothing,

and cast lots.” To be precise, drawing lots means that each of N players blindly chooses one object out of a collection of N � 1 like objects

and 1 unlike object, e.g. stones (one of which is a di↵erent color) from a bag, or drinking straws (one of which is short).



Ch. 5. Graph theory

1. Sets and relations

Definition 1.

A set1 is a collection of objects of any sort: people, numbers, books, outcomes of experiments, geo-
metrical figures, etc. Thus we can speak of the set of all integers, or the set of all oceans, or the set of
all possible sums when two dice are rolled and the number of dots on the uppermost faces are added,
or the set consisting of the residents of the city of Washington, D.C.

A set must be well-defined, by which we mean that, for any object whatsoever, the question, “Does
this object belong to the collection?” has an unambiguous “yes” or “no” answer. It is not necessary
that we personally have the knowledge required to decide which answer is correct. We must know only
that, of the answers “yes” and “no,” exactly one is correct.

Let us also agree that no object in a set is counted twice. That is, the objects are distinct. It follows
that, when listing the objects in a set, we do not repeat an object after it is once recorded. For example,
the set of letters in the word “banana” is not a set containing six letters, but rather the three distinct

letters b, a, and n.

One way to write a set is to list all its objects (which are called its members or elements) one by one;
this way of writing a set is called the roster method. We use curly braces { and } to indicate that we
are talking about the set of things in the list. So, for example, the symbols

{1, 2, 3}

mean, “The set consisting of 1, 2, and 3,” and the symbols

{Tom, Jill, Janet}

mean, “The set consisting of Tom, Jill, and Janet.”

1This paragraph and the next two are adapted from Samuel Goldberg, Probability: An introduction (Dover: 1986).
Note that our “definition” of a set is is not logically satisfactory, as the author emphasizes. The idea of a “set” is so
deep in the foundations of mathematics that to define it in terms of more basic concepts would be beyond the scope of
this course.



Two sets can be multiplied. The result is called the Cartesian product.

Definition 2. The Cartesian product of two sets A and B is the set of all pairs with the first element
in A and the second element in B.

The Cartesian product can be visualized as a grid, with the members of A as the columns, and the
members of B as the rows.

Example.
Define A = {yellow, red}.
Define B = {car, bus, truck}.

yellow red
car yellow car red car
bus yellow bus red bus
truck yellow truck red truck

So

A⇥ B = {yellow car, red car, yellow bus, red bus, yellow truck, red truck}.

Question.
If two sets A and B each contain only finitely many elements, how can we find the number of elements
in the set A⇥ B?

Example.
Define

A = { , , , , , }.

Find A⇥ A.

When we multiply a set A by itself, the result is the set of all pairs of members in A. This is the most
important definition in this section:

Definition 3. A relation on a set A is a subset of the set A ⇥ A. In other words, a relation is a set
of pairs of members of A. We say that a and b are related if the pair ab is in the relation.

For our purposes, the order in a pair does not matter. For example, ⇢⇡ and ⇡⇢ will be considered the
same pair, and the same goes for and .



Example.
Let A be the set {Austin,Dallas,El Paso,Houston, San Antonio} of cities whose airports are served
by Southeast Airlines. Let R be the set of pairs of cities joined by a straight line on the following map;
suppose these lines represent which cities are connected by direct flights on Southeast Airlines.

Then

R = {Dallas-Houston,Houston-San Antonio, San Antonio-Austin, San Antonio-El Paso, San Antonio-Dallas}

is an example of a relation on the set A.

2. Graphs

Definition 4. A simple graph G = (V,E) is two sets:

• a set V of objects called vertices, and

• a relation E on V.

The set V may be any set whatsoever. We call V the vertex set of the graph. The members of V are
the vertices, and the pairwise relationships are the edges: X is related to Y if and only if XY is an

edge. In this case, we call X and Y the endpoints of the edge XY . We call E the edge set.

Notice that, according to this definition of a graph, edges may not be repeated.

To give a graph, we often use a picture, called a presentation or rendering of the graph. For
example, the dots and lines drawn on the above map of Texas gives a graph Ĝ whose vertex set is the
set of all cities labeled on the map, and whose edge set is the set R. In this example, “X is connected

to Y by a direct flight if and only if XY is an edge.”

Definition 5. A vertex which is not the endpoint of any edge is called an isolated vertex. (Give an
example of an isolated vertex in Ĝ.)



However, a graph should not be confused with its presentation. Di↵erent pictures can represent the
same graph.

Example.
Let V = {1, 2, 3, 4}. Let E = {12, 23, 34}. Draw two di↵erent presentations of G = (V,E).

Example.
Three di↵erent presentations of the Petersen graph are shown below. This graph can be defined as
follows:

Let V be the set of pairs of distinct numbers 1, 2, 3, 4, 5 (for example, 12, but not 11 or 22). Let
E be the relation of pairs of pairs that have no numbers in common (for example, the vertex 12 is
related to the vertex 34, but 23 is not related either to 24 or to 13). Then the Petersen graph
is the graph G = (V,E).

12

34

4535

41

24

13

23 52

51



Exercise.
How many di↵erent graphs exist having vertex set A,B,C?

How many di↵erent graphs exist having vertex set A,B?

How many di↵erent graphs exist having vertex set A?

Problem.
How many di↵erent graphs exist having vertex set A,B,C,D,E, F,G?



3. Degree

Definition 6. The degree of a vertex is the number of edges having that vertex as an endpoint,
where loops are counted twice. If a vertex has odd degree, we call it an odd vertex. Otherwise, we
call it an even vertex.

Example.
In the Petersen graph, each vertex has degree 3.

Example.
Find the degree of each vertex in the following graph.

1

2

3

4

5

Theorem 1: The Handshaking Theorem for Simple Graphs.
Let G = (V,E) be a graph. The sum of the degrees of the vertices in V is twice the number of edges
in E.

A loop is an edge both of whose endpoints are the same. Provide an argument that explains why this
theorem is true for any simple loopless graph.

If we allow graphs to have loops—and we do—-does this change the theorem? What if we allow multiple
edges between the same two vertices?

Corollary.
A simple graph has an even number of vertices of odd degree.

Why does this follow from the Handshaking Theorem? Does it matter whether we allow loops?



Ex. 1. Are the following two presentations the same graph?

Ex. 2.

(a.) Give the vertex set V and the edge set E of the graph G = (V,E) rendered below.

(b.) Give the vertex set V and the edge set E of the graph G = (V,E) rendered below.

(c.) Give the vertex set V and the edge set E of the graph G = (V,E) rendered below.



Ex. 3. For each of the following descriptions of a graph, either draw a presentation of such a graph, or
explain why no such graph is possible. (Hint: All but one are possible.)

(a.) A connected graph G = (V,E) with 8 vertices such that each vertex has degree 3.

(b.) A disconnected graph G = (V,E) with 8 vertices such that each vertex has degree 3.

(c.) A graph G = (V,E) with 8 vertices such that each vertex has degree 1.

(d.) A graph G = (V,E) with 15 vertices such that each vertex has degree 5.



4. Adjacency

Definition 7. We say that two vertices X and Y are adjacent vertices if XY is in the edge set.

Exercise.
Draw a graph whose vertex set is V = {1, 2, 3, 4}, such that each vertex is adjacent to every other.
Then do the same thing with the vertex set V0

= {1, 2, 3}.

Definition 8. The complete graph on n vertices is the graph whose vertex set V consists of n
elements, and whose edge set contains every pair of vertices in V.

When a graph has many edges, it would be tedious to write out which vertices are adjacent to each
other. A better way to organize this information is by using an adjacency matrix.

In our class, an adjacency matrix will be a table whose rows are labeled by the vertices in the graph,
and whose rows are also labeled by the vertices in the graph. (If this reminds you of the Cartesian
product, it is no coincidence.)

We place a 1 or 0 in each square: 1 if the vertices are adjacent, and 0 if not.

Exercise.
Find the adjacency matrix of the following graph (which is in “three pieces”).

A
B

C

D

E

F

A
B

C

D

E

F

A
B

C

D

E

F

G



Exercise.
How many edges are there in a complete graph on n vertices?

Hint: Have we done anything like this before, in an earlier unit? Draw a few graphs for small values of
n (say, 3, 4, 5 vertices) and see if you can write a general formula that predicts the number of edges
for any value of n.

Problem.
How many graphs having a vertex set {A,B,C,D} are possible?

Hint: Use your answer to the previous exercise to get started. Don’t draw all the possible graphs,
it’s too tedious! (Don’t write out all the possible adjacency matrices, either—but thinking about the
adjacency matrix may help you get started.)



Resolution: How many simple graphs on n labeled vertices?

We have seen that every simple2 graph can be represented by an adjacency matrix.

We also saw that many of the entries in the adjacency matrix can safely be discarded, because they are
redundant. Since the adjacency matrix is symmetric, the only entries we need are those entries on the
diagonal and above it. After throwing out the other entries (below and to the left of the diagonal), we
can still reconstruct the graph.

The number of non-redundant entries in the adjacency matrix for a simple graph on n vertices was (we
saw last class):

n⇥ (n+ 1)

2
.

But this did not tell us how many graphs there are on n labeled vertices. It only told us how many
entries we need to keep, when we look at a simple graph’s adjacency matrix.

Today we will answer the question, “How many di↵erent simple graphs on n labeled vertices are pos-
sible?” by answering the question, “How many di↵erent adjacency matrices for a simple graph on n
vertices are possible?”

2Recall that a simple graph is a graph without multiple edges.



5. Paths and circuits

Definition 9. A path3 is a sequence of vertices with the property that each vertex in the sequence
is adjacent to the next. Alternately, a path can be thought of as the sequence of edges joining such a
sequence of vertices. Each edge must appear only once in a path. The number of edges in a path is
called the length of the path.

Definition 10. A circuit is a path which begins and ends at the same vertex.

Example.
The map on p. 160 shows the bridges of Königsberg, Germany as they appeared to the mathematician
Leonhard Euler (pronounced “oiler”) when he visited the city in the 1730s. We reproduce it here in
miniature, at left. A simpler, if less picturesque, version appears at right.

This is the most famous graph in all of graph theory, because it was the first. The first article about
graph theory was published by Euler in 1736, and it was about this graph.

Lots of math—geometry, algebra, the theory of numbers—is old. Not graph theory. It wasn’t considered
“serious math” until as late as the 1960s. Today it is considered one of the most exciting branches
of math, at least in part because it is so marketable. Graph theory can give answers not only to
problems involving transportation networks (air tra�c, highway planning) and communication networks
(telephony, Internet, etc., not to mention the power grid), but also to problems of management and
business (scheduling a large number of students in a large number of classes, increasing e�ciency of
workflow, designing committees).

Exercise.
Find a path of length 5 in the graph of Konigsberg’s bridges. Then find a path of length 6. Is there a
circuit of length 6? Is there a path of length 7? Is there a path of length 8?

3Tannenbaum’s definition of a “path” is not universally accepted. Other authors say a “simple path” (Rosen,
Discrete Math and its Applications) or a “trail” (West, Introduction to Graph Theory.



Definition 11. A unicursal drawing is a tracing of a presentation without lifting the pencil or retracing
any of the edges.

We will develop methods for determining whether a graph has a unicursal tracing, even when the graph
is quite complicated. Does the Petersen graph have one? (Here is another presentation of the Petersen
graph:)

Definition 12. A graph is called connected if there is a path between every pair of distinct vertices
in the graph.

Definition 13. An Euler circuit is a circuit that passes through every edge of the graph.

Theorem 2. A connected graph has an Euler circuit if and only if each of its vertices have even
degree.

Exercise.
Can you convince yourself that, if a connected graph has an Euler circuit, then each of its vertices indeed
must have even degree? Try sketching a few graphs using the swath of random dots provided.



A routing problem is concerned with finding ways to route the delivery of goods and/or services to an
assortment of destinations.

For example (see p. 163 for a picture), if a security guard needs to patrol every block4 in the neighbor-
hood, he doesn’t want to walk down the same block twice. If in addition he needs to pick up his car
wherever he left it at the beginning of his patrol, we have the following routing problem:

• Is there a circuit that covers every block?

• If some blocks must be covered more than once, what is an optimal route that covers every block?

The former is an example of the Existence Question for a routing problem. The latter is an example
of the Optimization Question. Theorem 2 completely answers the existence question for the security
guard’s routing problem. In the sections to follow, we will discuss methods to solve the optimization
question.

4Note that Tannenbaum uses the word “block” to mean one side of a square block: that is, there are four blocks on
each side of a square plot of land boxed in by streets.



6. Euler’s theorems

Recall that an Euler path is a path that passes through every edge in the graph. An Euler circuit is
an Euler path that begins and ends at the same vertex.

Look at the graphs on page 188. Which graphs have Euler paths? Which have Euler circuits? We can
tell at a glance that some graphs certainly do not have an Euler path (or an Euler circuit):

—but for the more complicated graphs, it would be nice to have an easy test for whether or not there
is an Euler path (or Euler circuit).

vocabulary term example

Routing problem Find a walk in a given graph which crosses every edge, and

which minimizes the number of edges crossed more than once.

Existence question
for a routing problem

Does there exist an Euler circuit (i.e. no re-crossings)

in the given graph?

Optimization question
for a routing problem

What is the fewest number of re-crossings Euler circuit

in the given graph?

Negative solution There is no Euler circuit in the given graph.

Constructive solution There is an Euler circuit in the given graph, and here it is!

Non-constructive solution There is some Euler circuit in the given graph, somewhere.

Theorem 3. Euler’s circuit theorem.
A connected graph has an Euler circuit if every vertex is even.

What kind of solution to the routing problem of finding an Euler circuit does this theorem provide?

How can we use this theorem to establish that a given graph does not have an Euler circuit?

...So Euler’s circuit theorem also provides a negative solution to the problem for certain graphs.

Theorem 3’. Euler’s circuit theorem: Negative solution.
A connected graph has no Euler circuit if



A similar result can be used to establish the existence or non-existence of Euler paths, but there is one
detail to be addressed.

Proposition.
If a vertex in an Euler path has degree 1, then the path either begins or ends at that vertex.

Why?

Theorem 4. Euler’s path theorem.
A connected graph with exactly two odd vertices has at least one Euler path.
Moreover, every such path starts at one of the odd vertices and ends at the other.

We can now be certain that our failure to find an Euler path or an Euler circuit in the Bridges of
Königsberg graph was due not to any lack of cleverness on our part. Euler’s path theorem5 is extraordi-
narily powerful—no matter how complicated the graph is, it provides an easily obtained solution. Using
Euler’s Path Theorem on the Bridges of Königsberg, which is a rather uncomplicated graph, is a little
like using an atom bomb to swat a fly.

5In addition to the circuit theorem and path theorem, Euler also proved both the Handshaking Theorem and its
corollary in his famous 1736 article, which can easily be found reprinted in English.



7. Fleury’s algorithm

Euler’s path6 theorem solves the existence question for the problem of finding an Euler path. But it says
nothing about how to actually find the Euler path: the theorem only says, there is some Euler path,

somewhere.

For a small graph, trial-and-error is a pretty good way to find an Euler path. First, use Euler’s theorems to
establish whether there is such a path or not—you don’t want to waste your time looking for something
which the theorems say do not exist! Then start drawing paths. Better use a pencil!

However, when the graph is huge—as any real-world graph of practical significance is likely to be—it is
out of the question to use trial-and-error. For example, the graph that represents all the power stations
in the nation’s electric grid contains thousands of vertices, joined by hundreds of thousands, perhaps
millions of edges. Trial-and-error is simply not practically feasible, given that we have better things to
do with our time than sketching a few quadrillion paths until we find one that works.

A little piece of another graph which one would not want to use trial-and-error on is shown below (you
may have seen it at a certain sandwich shop).
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34 St
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Station
 A•C•E•LIRR

 42 St
Port Authority
Bus Terminal

 A•C•E

 Times Sq
42 St

N•Q•R•S•W•1•2•3•7

Grand Central
42 St
S•4•5•6•7•Metro-North 

47–50 Sts
Rockefeller Ctr
B •D•F•V

34 St
Penn

Station
1•2•3•LIRR

34 St
Herald Sq

B •D•F
N•Q•R•V•W

42 St 
Bryant Pk
B •D•F•V

5 Av
    7

Lexington Av/53 St E•V

59 St   
4•5•6

51 St   
6

Lexington Av/59 St
N•R•W

5 Av/53 St
E•V

 5 Av/59 St
N•R•W

125 St
1

168 St 
 A•C•1 A•C

Dyckman St
1

Inwood
207 St

A

215 St
1

3 Av–149 St
2•5

Woodlawn
4

Marble Hill
225 St
1

231 St
1

      75 St   
   Z rush hours, 
   J other times
Cypress Hills
 J

85 St–Forest Pkwy
                          J   

Woodhaven Blvd
                   J•Z  

   104 St
  Z rush hours,
  J other times

111 St
J

     121 St
   Z rush hours, 
   J other times

Sutphin Blvd
Archer Av 
JFK Airport
E•J•Z •LIRR

Jamaica
179 St
F

Jamaica Center 
Parsons/Archer
E•J•Z
     Jackson Hts

Roosevelt Av

E •F •G •R
•V • Q33 Q47 

             LGA Airport 

  Flushing
Main St  

            7      
 

Nostrand Av
3

   Crown Hts
Utica Av
3•4              

Saratoga Av
  3   

Rockaway Av
              3   

Junius St
       3   

Pennsylvania Av
3

Van Siclen Av
3

New Lots Av
3

Sutter Av–Rutland Rd
3

A•C•J •M•Z
2•3•4•5

Open 11am-7pm
on racing days

  Westchester Sq
  East Tremont Av
   6

Intervale Av
             2•5  

Prospect Av
         2•5   

Jackson Av
      2•5       

  Willets Point 
Shea Stadium
7 •   Q48 LGA Airport

     Van Siclen Av
    Z rush hrs,
    J other times

138 St–Grand
Concourse
4•5

M60 LaGuardia Airport

M60 LGA Airport  

Rector St
1

Cortlandt St
1

Cortlandt St
R•W

South Ferry
1

World Trade
Center

E

  207 St
 1

rush 
hours

rush 
hours

rush 
hours

St. George

Tompkinsville

Stapleton

Clifton
  S51

Grasmere

Old Town

Dongan Hills

Jefferson Av

Grant City
          S51/81  

New Dorp
 

Oakwood Heights
                          S57     

Bay Terrace

      Great Kills
S54 X7 X8   

Eltingville

Annadale
      S55  

     Huguenot   
S55 X17 X19   

Prince's Bay
           S56  

Pleasant Plains

Richmond Valley

Nassau
S74/84

Atlantic
S74/84

Stadium
(game days only)

Tottenville
      S74/84

(Temporarily 
Closed)

S

Q10 JFK Airport

=

 = = =
 =

 = =     

= 

=

Flushing–Main St
Subway 7
NYC Transit Bus
Q12 Little Neck
Q13 Ft Totten
Q14 Whitestone
Q15 Beechhurst
Q16 Ft Totten
Q17 Jamaica
Q19 Astoria
Q20A/B College Pt–Jamaica
Q26 Auburndale
Q27 Cambria Heights
Q28 Bay Terrace
Q44 Bronx Zoo–Jamaica
Q48 LaGuardia Airport 0  
Q58 Ridgewood

MTA Bus
Q25 Jamaica–College Pt
Q34 Jamaica–Whitestone
Q65 Jamaica–College Pt
Q66 Long Island City
QBx1 Co-op City

LI Bus
N20 Hicksville
N21 Glen Cove

LIRR

Queens Plaza
Queensboro Plaza
Subway EG =N =RVW 7
NYC Transit Bus
B61 Red Hook
Q32 Midtown Manhattan
MTA Bus
Q39 Ridgewood 
Q60 Manhattan–South Jamaica
Q66 Flushing
Q67 Middle Village
Q69 Jackson Heights
Q100 Rikers Island 
Q101 Manhattan–Astoria
Q102 Astoria–Roosevelt Island

Woodhaven Blvd
Queens Center
Subway G =RV
NYC Transit Bus
Q59 Williamsburg
Q88 Queens Village

MTA Bus 
Q11 Howard Bch or Hamilton Bch 
Q29 Jackson Heights–Glendale
Q38 Middle Village 
Q53 Woodside–Rockaway Park

Jamaica–Sutphin Blvd
Long Island Rail Road
Subway EJZ
NYC Transit Bus
Q20A/B College Point
Q24 Bushwick 
Q30 Little Neck
Q31 Bayside
Q43 Floral Park 
Q44 Flushing–Bronx Zoo
Q54 Williamsburg
Q56 Broadway Junction

MTA Bus 
Q6 JFK Postal Facility
Q8 City Line
Q9 S. Ozone Park
Q25 College Point 
Q34 Whitestone 
Q40 South Jamaica
Q41 Lindenwood
Q60 Manhattan–South Jamaica 
Q65 College Point
AIRTRAIN

Kew Gardens 
Union Tpke
Subway EF
NYC Transit Bus
Q46 Glen Oaks or 
        Lake Success
Q74 Queens College

MTA Bus 
Q10 JFK Airport 
Q37 South Ozone Park

121 St
Subway JZ   
MTA Bus
Q10 Kew Gardens, 
       JFK Airport 0 

Myrtle–Wyckoff Avs
Subway L M
NYC Transit Bus 
B13 Spring Creek–Williamsburg
B26 Halsey St
B52 Gates Av
B54 Myrtle Av
Q55 Richmond Hill
Q58 Flushing

Grand Central Terminal
Metro-North Railroad
Subway S 456 7
NYC Transit Bus
M1 5th/Madison Avs
M2 5th/Madison Avs
M3 5th/Madison Avs
M4 5th/Madison Avs
M5 Riverside Dr/5 Av/6 Av
M42 42 St Crosstown
M98 Washington Hts
M101 Third/Lex Avs
M102 Third/Lex Avs
M103 Third/Lex Avs
M104 Broadway
Q32 Jackson Hts/Penn Station
X25 Downtown Manhattan

NY Airport Service 0 
Newark Airport Express

Forest Hills  
71 Av
Subway EF GR V
MTA Bus 
Q23 East Elmhurst 
Q64 Electchester
LIRR

Euclid Av/Pitkin Av
Subway AC
NYC Transit Bus 
B13 Spring Creek–Williamsburg

MTA Bus 
Q7 Rockaway Blvd
Q8 101 Av

New Lots Av
Subway 3
NYC Transit Bus 
B6 Bensonhurst–East New York
B15 JFK Airport 0

Canarsie
Rockaway Pkwy
Subway L
NYC Transit Bus 
B6 Bensonhurst–East New York
B17 Remsen Av
B42 Rockaway Pkwy  
B60 Wilson Av
B82 Coney Island–Spring 
        Creek Towers

Brooklyn College/
Flatbush Av
Subway 25
NYC Transit Bus 
B6 Bensonhurst–East New York
B11 49/50 Sts–Avenue J
B41 Flatbush Av
B44 Nostrand Av

MTA Bus 
Q35 Rockaway Park
B103 Canarsie

= = 

Coney Island
Stillwell Av
Subway =DF NQ 
NYC Transit Bus
B36 Sheepshead Bay
B64 Bath Av
B68 Coney Island Av
B74 Mermaid Av
B82 Spring Creek Towers

Bay Pkwy/86 St
Subway=D M
NYC Transit Bus 
B1 86 St
B6 Bensonhurst–East New York
B82 Coney Island–Spring 
        Creek Towers

86 St/4 Av
Subway R
NYC Transit Bus 
B16 Ft Hamilton Pkwy
B37 Third Av
B63 Fifth Av
B64 Bath Av
S53 Port Richmond
S79 SI Mall via Hylan Blvd
S93 Willowbrook

Atlantic Av/Atlantic Av- 
Pacific St
Long Island Rail Road
Subway =B=DM =N =Q =R
23 45
NYC Transit Bus 
B41 Flatbush Av
B45 St John’s Pl
B63 Fifth Av
B65 Dean/Bergen Sts
B67 Seventh Av

Court St/Borough Hall
Subway MR23 45 

Jay St–Borough Hall
Subway AC F
NYC Transit Bus 
B25 Fulton St
B26 Halsey St
B37 Third Av
B38 DeKalb Av
B41 Flatbush Av
B45 St John’s Pl
B51 City Hall
B52 Gates Av
B54 Myrtle Av
B57 Flushing Av
B61 Red Hook–Queens Plaza
B65 Dean/Bergen Sts
B67 Seventh Av
B75 Ninth St

MTA Bus
B103 Canarsie

Broadway–Nassau
Fulton Street
Subway AC JM Z 
23 45
NYC Transit Bus 
M1 Fifth/Madison Avs
M6 Broadway/Sixth Av
M15 First/Second Avs

City Hall
Subway RW
Bklyn Bridge–City Hall
Subway JMZ 456
NYC Transit Bus 
M1 Fifth/Madison Avs
M6 Broadway/Sixth Av
M15 First/Second Avs
M22 Madison St
M103 Third/Lexington Avs
B51 Downtown Brooklyn

Marcy Av
Subway JMZ
NYC Transit Bus 
B24 Greenpoint Av
B39 Williamsburg Br
B44 Nostrand Av
B46 Utica Av
B60 Wilson Av
Q54 Metropolitan Av

Penn Station
Long Island Rail Road 
Subway ACE 123
NYC Transit Bus
M4 5th/Madison Avs
M10 Central Park West
M16 34 St Crosstown
M20 7th/8th Avs
M34 34 St Crosstown
Q32 Jackson Hts
NJ Transit • Amtrak    
Newark Airport Express • 
NY Airport Service 0

Port Authority
Bus Terminal
Subway ACE
NYC Transit Bus
M10 Central Park West
M11 9th/10th Avs
M16 34 St Crosstown
M20 7th/8th Avs
M27 49/50 Sts Crosstown
M42 42 St Crosstown
M104 Broadway
Newark Airport Express • 
NY Airport Service • 
NJ Transit • Other 
commuter & long-
distance buses

Crown Heights
Utica Av
Subway 3 4
NYC Transit Bus 
B14 Sutter Av
B17 Remsen Av
B46 Utica Av

Rockaway Blvd
Subway A
MTA Bus 
Q7 City Line–JFK Cargo Area
Q11 Elmhurst–Howard Beach 
        or Hamilton Beach
Q21 Rockaway Park
Q41 Lindenwood
Q112 Jamaica–Ozone Park

Far Rockaway
Subway A
MTA Bus  
Q22 Roxbury
Q22A Bayswater
Q113 Jamaica
LI Bus
N31 Hempstead 
N32 Hempstead
N33 Long Beach

LIRR

Jackson Heights
74 St–Roosevelt Av
Subway EF GRV 7
NYC Transit Bus 
Q32 Midtown Manhattan

MTA Bus 
Q33 82/83 Sts LGA Airport  

(except Marine Air Terminal)
Q45 69 St
Q47 73/74 Sts LGA Airport 

(Marine Air Terminal only)
Q49 East Elmhurst
Q53 Woodside–Rockaway Park

Middle Village
Metropolitan Av 
Subway M
NYC Transit Bus 
Q54 Williamsburg 

MTA Bus 
Q38 Forest Hills or Corona
Q67 Long Island City 

Broadway Junction
Subway AC JL Z
NYC Transit Bus 
B20 Ridgewood–New Lots
B25 Fulton St
B83 Spring Creek/Gateway 
    Center Mall
Q24 Atlantic Av
Q56 Jamaica Av

LIRR 

Jamaica–169 St/179 St
Subway F               (179 St only)

NYC Transit Bus
Q1 Queens Village or Bellerose
Q2 Belmont Park
Q3 JFK Airport  0
Q17 Flushing
Q30 Little Neck (169 St only)
Q31 Bayside (169 St only)
Q36 Floral Park
Q43 Floral Park 
Q75 Oakland Gardens
Q76 College Point
Q77 Springfield Gardens

MTA Bus
Q110 Jamaica–Belmont Park 
         (179 St only, rush hour only) 
LI Bus 
N1 Elmont Rd
N2 Meacham Av 
N3 Franklin Av 
N6 Hempstead
N22 Hicksville
N22A Roosevelt Field
N24 Roosevelt Field 
N26 Manhasset

Jamaica Center
Subway E JZ
NYC Transit Bus
Q4 Cambria Heights
Q5 Green Acres Mall–Rosedale 
     (via Merrick Blvd)
Q20A/B College Point
Q24 Bushwick 
Q30 Little Neck
Q31 Bayside
Q42 Addesleigh Park
Q44 Flushing–Bronx Zoo
Q54 Williamsburg
Q56 Broadway Junction 
Q83 Cambria Heights
Q84 Laurelton
Q85 Green Acres Mall or
       Rosedale (via Bedell St)

MTA Bus  
Q6 JFK Postal Facility
Q8 City Line
Q9 S. Ozone Park
Q25 Flushing–College Point
Q34 Flushing–Whitestone 
Q41 Lindenwood
Q65 Flushing–College Point
Q110 Jamaica–Belmont Park
Q111 Jamaica–Rosedale
Q112 Jamaica–Ozone Park 
Q113 Jamaica–Far Rockaway

LI Bus 
N4 Freeport

Pelham Bay Park
Subway 6
NYC Transit Bus
Bx5 Bruckner Blvd/Story Av
Bx12 Select Bus Service
Bx12 Pelham Pkwy/Bay Plaza
Bx12 Orchard Beach
Bx14 Country Club–Parkchester
Bx29 Bay Plaza–City Island

MTA Bus
QBx1 Co-op City–Flushing

Bee-Line
45 Eastchester

Westchester Square
East Tremont Av 
Subway 6
NYC Transit Bus
Bx4 Westchester Av
Bx8 Throgs Neck 
Bx14 Country Club–Parkchester 
Bx21 Boston Rd–Morris Park Av
Bx31 Eastchester Rd
Bx40 Throgs Neck
Bx42 Throgs Neck

Parkchester
Subway 6
NYC Transit Bus
Bx4 Westchester Av
Bx14 Country Club 
Bx36 Soundview
Bx39 Clason Pt
Q44 Bronx Zoo–Jamaica

Fordham Plaza
Metro-North 

NYC Transit Bus
Bx9 B’way/Kingsbridge Rd
Bx12 Select Bus Service
Bx12 Pelham Pkwy/Fordham Rd
Bx15 Third Av/125 St
Bx17 Crotona/Prospect Avs
Bx22 Castle Hill Av
Bx41 Webster Av/W. Plains Rd
Bx55 Third Av  
Bee-Line
60 White Plains
61 Port Chester
62 White Plains

3 Av–149 St
Subway 25
NYC Transit Bus
Bx2 Grand Concourse
Bx4 Westchester Av
Bx15 Third Av/125 St
Bx19 Southern Blvd/E 149 St
Bx21 Morris Pk Av/Boston Rd
Bx41 Webster Av/W. Plains Rd
Bx55 Third Av  

Hunts Point Av 
Subway 6
NYC Transit Bus
Bx5 Story Av/Bruckner Blvd
Bx6 Hunts Point
Bx19 Southern Blvd/E 149 St

Norwood–205 St
Subway D
NYC Transit Bus
Bx10 Riverdale
Bx16 E 233 St/Nereid Av
Bx28 E Gun Hill Rd
Bx30 Boston Rd/E Gun Hill Rd
Bx34 Bainbridge Av

Wakefield–241 St 
Subway 2
NYC Transit Bus
Bx41 Webster Av/White Plains Rd

Bee-Line
40 Westchester Med Ctr
41 Westchester Med Ctr
42 New Rochelle

Metro-North 

Woodlawn
Subway 4
NYC Transit Bus
Bx16 E 233 St/Nereid Av
Bx34 Bainbridge Av

Bee-Line
4 Yonkers
20 White Plains
21 White Plains

M60
LaGuardia
Airport

Kings Hwy/E 16 St
Subway =B =Q
NYC Transit Bus 
B2 Avenue R
B7 Kings Highway
B31 Gerritsen Av
B82 Coney Island–Spring 
        Creek Towers

MTA Bus
B100 Mill Basin

Sheepshead Bay
Subway =B =Q  
NYC Transit Bus 
B4 Bay Ridge Pkwy
B36 Coney Island
B49 Ocean Av

=F

34 Street-Herald Sq
Subway BDF N
                          QR V W
NYC Transit Bus
M4 5th/Madison Avs
M5 Riverside Dr/5 Av/6 Av
M6 B’way/Sixth Av
M7 Columbus/Amsterdam Avs
M16 34 St Crosstown
M34 34 St Crosstown
Q32 Jackson Hts

PATH 

2,3 and northbound 4,5

4,5,6 only

E ,G ,R,V only

except S

Simpson St 
Subway 2 5
NYC Transit Bus
Bx4 Westchester Av
Bx5 Story Av/Bruckner Blvd
Bx11 George Washington Bridge
Bx19 Southern Blvd/E 149 St
Bx27 Clason Point
Bx35 George Washington Bridge

Van Cortlandt Pk–242 St
Subway 1
NYC Transit Bus
Bx9 Broadway/West Farms Sq

Bee-Line
1 Yonkers/Hastings
1C Westchester Cty Comm Coll
1T Tarrytown
1W White Plains
2 Yonkers
3 White Plains

Marble Hill–225 St
Subway 1
NYC Transit Bus
Bx7 Riverdale Av/Broadway 
Bx9 Broadway/Kingsbridge Rd
Bx20 Inwood/Riverdale

Metro-North 

Inwood–207 St
Subway A
NYC Transit Bus
M100 B'way/Amsterdam Av
Bx7 Riverdale Av/Broadway
Bx12 Select Bus Service
Bx20 Marble Hill/Riverdale

A only

George Washington
Bridge Bus Station
175 St/181 St
Subway A1
NYC Transit Bus
Bx3 University Av
Bx7 Riverdale Av/B’way
Bx11 Clrmnt Pkwy/170 St
Bx13 Ogden Av
Bx35 E 167 St
Bx36 E174 St
M4 Fifth/Madison Avs
M5 Riverside Dr/5 Av/6 Av
M98 Midtown
M100 Amsterdam Av/B’way

NJ Transit 
Red & Tan  Lines

125 St/Metro-North
Subway 456
NYC Transit Bus
Bx15 Third Av/125 St
M35 Wards Island
M60 LaGuardia Airport 0      
M98 Wshngtn Hts/Midtown
M100 Amsterdam Av/B’way
M101 Third/Lex Avs
M103 Third/Lex Avs

Times Sq–42 St
Subway =N=Q=RS =W
123 7
NYC Transit Bus
M6 B’way/Sixth Av
M7 Columbus/Amsterdam Avs
M10 Central Park West
M20 7th/8th Avs
M27 49/50 Sts Crosstown
M42 42 St Crosstown
M104 Broadway

Staten Island Mall

NYC Transit Bus 
S44/94 St. George via Cary Av
S55 Huguenot via Annadale Rd
S56 Huguenot via Woodrow Rd
S59 Port Richmond–Tottenville
S61/91 St. George via Bradley Av
S79 Bay Ridge via Hylan Blvd
S89 Eltingville–Bayonne
X17 East Midtown
X31 East Midtown

Eltingville 

Staten Island Railway 
NYC Transit Bus 
S59 Port Richmond–Tottenville 
S79 SI Mall–Bay Ridge
S89 Bayonne  
X1 West Midtown  
X4 Downtown Manhattan  
X5 East Midtown  
X6 West Midtown  

New Dorp 

Staten Island Railway 
NYC Transit Bus 
S57 Port Richmond  
S76/86 Oakwood   

Grasmere 

Staten Island Railway 
NYC Transit Bus 
S53 Bay Ridge–Port Richmond  

St. George 

Staten Island Railway 
NYC Transit Bus 
S40/90 Howland Hook via Richmond Terr  
S42 St Marks Pl  
S44/94 SI Mall via Cary Av  
S46/96 Castleton Av  
S48/98 Forest Av  
S51/81 Grant City
S52 South Beach  
S61/91 SI Mall via Bradley Av  
S62/92 Victory Blvd  
S66 Pt Richmond via Jewett Av  
S67 Pt Richmond via Watchogue Rd  
S74/84 Tottenville via Richmond Rd
S76/86 Oakwood
S78 Tottenville via Hylan Blvd

Staten Island Ferry

Port Richmond

NYC Transit Bus 
S40/S90 St. George/Howland Hook
S53 Bay Ridge, Brooklyn
S57 New Dorp
S59 Tottenville
S66 St. George via Jewett Av
S67 St. George via Willowbrook Rd

                          

southbound only

except

n-bound

s-bound
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Norwood/205 Street, Bronx –  
Coney Island, Brooklyn;
Express in Bronx (peak direction), 
Manhattan and Brooklyn

Norwood/205 Street,        
Bronx –  Coney Island, 
Brooklyn; Local in Bronx and 
Brooklyn, Express  in 
Manhattan

Jamaica/179 St, Queens – Coney Island, Brooklyn;
Express, Forest Hills/71 Avenue–21 St/Queensbridge, Queens; Local in Manhattan and Brooklyn

145 St, Manhattan – Brighton Beach, 
Brooklyn; Local in upper Manhattan, Express 

in midtown Manhattan and Brooklyn

Bedford Park Blvd, Bronx  – 
Brighton Beach, Brooklyn;
 Local in Bronx and upper 
Manhattan, Express in midtown 
Manhattan and Brooklyn

Norwood/205 St, Bronx  – Coney Island, Brooklyn;
Local in Bronx, Express in Manhattan and Brooklyn

Forest Hills/71 Av, Queens – Lower East Side/2 Av, Manhattan; Local

Washington Heights/168 St, Manhattan – Euclid Avenue, Brooklyn; Local

Jamaica Center, Queens – World Trade Center, Manhattan; Express in Queens, Local in Manhattan;
some rush hour trips to/from Jamaica/179 St, Queens

Jamaica Center, Queens,– 
World Trade Center, 
Manhattan;  Local

Broad Channel – Rockaway Park/Beach 116 St, Queens, Local; connect with =A at Broad Channel

Inwood/207 St, Manhattan – Ozone Park/Lefferts Blvd or Far Rockaway, Queens;  
Express in Manhattan and Brooklyn, Local in Queens; Note: A also serves Rockaway Park, Queens, during 

rush hours; other times transfer to S Rockaway Park Shuttle at Broad Channel, Queens

No service, use =E F G 

Long Island City/Court Sq, Queens – Smith/9 Sts, 
Brooklyn; Local Forest Hills/71 Av, Queens – Smith/9 Sts, Brooklyn; Local 

No service, use =A

No service, use =A C D

Inwood/207 Street, 
Manhattan – Far Rockaway, 
Queens; Local
Note: Lefferts Blvd shuttle 
connects at Euclid Avenue

Astoria/Ditmars Blvd, Queens – Coney Island, Brooklyn;
Local in Queens, Express in Manhattan and Brooklyn

Astoria/Ditmars Blvd, 
Queens – Coney Island, 
Brooklyn; Local in Queens and 
Manhattan, Express  in Brooklyn

Astoria/Ditmars Blvd, 
Queens – Coney Island, 
Brooklyn; Local;  
via Lower Manhattan

Metropolitan Av, Queens  –  
Bay Parkway, Brooklyn;
Local

Metropolitan Av, Queens – 
Chambers St, Manhattan; 
Local

Metropolitan Av, Queens – Myrtle Av, Brooklyn;
Local; connect with =J at Myrtle Av

Metropolitan Av, Queens – 
Broad St, Manhattan; Local

Franklin Av – Prospect Park, Brooklyn; Shuttle

Jamaica Center, Queens – 
Broad St, Manhattan;
Local, in Queens and 
Manhattan; Express, Myrtle Av-
Marcy Av peak direction only

=J/=Z skip-stop service
between Sutphin Blvd and  
Myrtle Av peak direction only

8 Av, Manhattan – Canarsie/Rockaway Parkway, Brooklyn; Local

Midtown-57 St/7Av, Manhattan – Coney Island, Brooklyn; Express in Manhattan, Local in Brooklyn

No =Z service, use =J

= =

=

No  service, use N R

Jamaica Center, Queens  – 
Broad St, Manhattan;
Local

Jamaica Center, Queens – 
Broad St, Manhattan;
Local, in Queens and 
Manhattan; Express, Myrtle 
Av-Marcy Av peak direction only

Jamaica Center, Queens  – 
Chambers St, Manhattan;
Local; connect with =4 =5 =6  
at Chambers St

Jamaica Center, Queens  – 
Broad St, Manhattan;
Local (to Chambers St only
weekend nights)

Forest Hills/71 Av, Queens – Bay Ridge/95 St, Brooklyn; Local

Astoria/Ditmars Blvd, Queens  – Whitehall St, Manhattan; Local

36  St – Bay Ridge/95 St, 
Brooklyn; Local; connect with 
           or            at 36 St. NOTE: skips 
53 St and 45 St northbound

Times Square – Grand Central, Manhattan; Shuttle No service, use =7

Dyre Av, Bronx  – Bowling Green, Manhattan; Local in Bronx; 
Express in Manhattan

Flushing/Main St, Queens – Times Square, Manhattan; Local

Pelham Bay Park, Bronx – Brooklyn Bridge, Manhattan;
Local

Van Cortlandt Park/242 St, Bronx – South Ferry, Manhattan; Local

Wakefield/241 St, Bronx – Flatbush Av, Brooklyn; Express in Manhattan; Local in Bronx and Brooklyn
some rush hour trips to/from New Lots Av, Brooklyn

Harlem/148 St, Manhattan – 
Times Square/42 St, 
Manhattan; Express

Woodlawn, Bronx – 
New Lots Av, Brooklyn;
Local

Wakefield/241 St, Bronx – 
Flatbush Av, Brooklyn;
Local

Dyre Av – E 180 St, Bronx; 
Local; transfer to =2 at E 180 St

Flushing/Main St, Queens  – Times Square, Manhattan
=7
±‡

Pelham Bay Park or Parkchester, Bronx – 
Brooklyn Bridge, Manhattan
=6
fl 

to Parkchester, Local
to Pelham Bay Park, Express in Bronx, peak direction only; 
Local in Manhattan

Local
Express peak direction only until 10PM

Woodlawn, Bronx – Crown Heights/Utica Av, Brooklyn;
Local in Bronx; Express in Manhattan and Brooklyn Note: skips 138 St, Bronx, rush hours in peak direction 

some rush hour trips to/from New Lots Av, Brooklyn

Harlem/148 St, Manhattan  – New Lots Av, Brooklyn; Express in Manhattan; Local in Brooklyn

Nereid Av or Dyre Av, Bronx – Flatbush 
Av, Brooklyn; Express in Manhattan and 
Brooklyn; Express in Bronx, peak direction 
only; some rush hour trips to/from Utica Av or 
New Lots Av, Brooklyn

1

2

3

4

5

6

7 Flushing
Local

Lexington Av
Local
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Lexington Av
Express
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Express

Broadway/7 Av
Local
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Local
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=Q
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=W

=N

=Q
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Rush HoursRush Hours
6:30 AM – 9:30 AM,
3:30 PM – 8:00 PM
Monday – Friday

MiddaysMiddays
9:30 AM – 3:30 PM
Monday – Friday

EveningsEvenings
8:00 PM – 12 midnight
Monday – Friday

Late NightsLate Nights
12 midnight – 6:30 AM
Every day

WeekendsWeekends
6:30 AM – 12 midnight
Saturday & Sunday

Rush HoursRush Hours
6:30 AM – 9:30 AM,
3:30 PM – 8:00 PM
Monday – Friday

MiddaysMiddays
9:30 AM – 3:30 PM
Monday – Friday

EveningsEvenings
8:00 PM – 12 midnight
Monday – Friday

Late NightsLate Nights
12 midnight – 6:30 AM
Every day

WeekendsWeekends
6:30 AM – 12 midnight
Saturday & Sunday

Time of day

Route

Time of day

Route

Rush HoursRush Hours
6:30 AM – 9:30 AM,
3:30 PM – 8:00 PM
Monday – Friday

MiddaysMiddays
9:30 AM – 3:30 PM
Monday – Friday

EveningsEvenings
8:00 PM – 12 midnight
Monday – Friday

Late NightsLate Nights
12 midnight – 6:30 AM
Every day

WeekendsWeekends
6:30 AM – 12 midnight
Saturday & Sunday

Time of day

Route

D

Subway Service Guide

≤ Accessible Stations

Routes Station
MANHATTAN

A

175 St
168 St

CE

AC

50 St/8 Av southbound only

A

Inwood/207 St 

ACE 34 St/Penn Station

ABCDEFV W 4 St/Wash Sq

Jackson Hts/Roosevelt Av

ABCD 125 St

ACE L

E

14 St/8 Av

World Trade Center (elevator not in 
service due to long-term construction)

Cortlandt St southbound only

ACE 42 St/8 Av (Port Authority Bus Terminal)

Roosevelt Island
Lexington Av/63 St

F
F

Lexington Av/53 StEV

EF

14 St/Union Sq
34 St/Herald Sq

456 125 St

123 34 St/Penn Station

1 66 St/Lincoln Center

1
233 St

123 72 St

23 135 St

49 St northbound only

6 51 St

6 Canal St

456 7 Grand Central/42 St 

456 Brooklyn Bridge/City Hall
45 Bowling Green

BRONX

6 Pelham Bay Park

4 Fordham Rd

25

25

25

Gun Hill Road25

3 Av/149 St

Pelham Pkwy
25 Simpson St

BD 4

DF

F

B          

161 St/Yankee Stadium
231 St

QUEENS

EJZ Sutphin Blvd/Archer Av/JFK Airport

EJZ Jamaica Center (Parsons/Archer)

JM Flushing Av

JMZ Marcy Av

E Jamaica/Van Wyck
 AC Euclid Av

M

M

Middle Village/Metropolitan Av

A Howard Beach/JFK Airport

AS Rockaway Park/Beach 116 St

Woodside/61 St

‡7

‡7

Junction Blvd
Kew Gardens/Union Tpke

‡7

Flushing/Main Street
7 74 St-Broadway
F 21 St/Queensbridge

F Jamaica/179 St

BROOKLYN

Coney Island/Stillwell Av

Atlantic Av-Pacific St
23 45
DM=N=R

DeKalb AvBM=Q=R
=N

Atlantic AvB=Q23 45

Utica Av34

Borough Hall (45 northbound only)

25

25

Park Pl

For further information on accessible service, call 
718-596-8585 from 6AM to 10PM daily.  
For information regarding the accessibility status 
of elevators and escalators, call 800-734-6772,  
24 hours a day. 

CS

Church Av
Church Av

Brooklyn College/Flatbush Av

Franklin Av

Prospect Park

L

L=N=QR =W

=Q

=Q

N=R=W

=R =W

S

Canarsie/Rockaway Pkwy

L Myrtle-Wyckoff Avs

BDF =N =Q =RVW

Times Sq/42 St=N =Q=R W123 7

EFG =R V

Queens PlazaEG =R V

S

The subway operates 24 hours a 
day, but not all lines operate at all 
times. For more information, call our 
Travel Information Center (6AM to 
10PM) at 718-330-1234. Non-
English-speaking customers call 
718-330-4847 (6AM to 10PM).

To show service more clearly, geography 
on this map has been modified. 
© 2008 Metropolitan Transportation Authority
Design: Michael Hertz Associates, NYC  

visit www.mta.info

Key

MTA New York City Transit
Subway in four boroughs,  
buses in five boroughs, and the  
MTA Staten Island Railway

August 2008

B 4

Full time
service

See Service Guide
below for details about 

specific lines

Part time
service

All trains stop
(local and express service)

Local service onlyPart-time line
extension

Free subway transfer
Free out-of-system subway 
transfer (excluding single- 
ride ticket)

Terminal
Bus or AIRTRAIN to airport

Accessible station

Additional express 
service  

Normal service

Commuter rail service 
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A

• C

MTA New York City Subway 
with bus, railroad, and ferry connections

6

Police

During the reconstruction of South Ferry and Fulton Street stations,  
weekend and late night 123 45 service is subject to change. For 
the latest service information, call the NYCT Travel Information Center at 
718-330-1234, check station posters, or visit the MTA website at 
www.mta.info.

WEEKEND AND LATE NIGHT 123 45 
SERVICE SUBJECT TO CHANGE

FIG. Subways of Lower Manhattan and Downtown Brooklyn

Notice that if one subway station is closed or disabled, we have a di↵erent graph (because the vertex set
changes). If this station was a vertex of high degree, it is quite possible that whatever Euler paths we had
before the station closure can no longer be traced. This implies that, every time a station is temporarily
closed, the problem of finding an Euler path must be solved all over again from scratch.

6Throughout this paragraph, the word “path” may be replaced in all instances by the word “circuit.”



We would like to have a systematic procedure to follow, which will tell us at the end whether there is
or is not an Euler path. This is provided by Fleury’s algorithm.

Definition 14. A cut-edge (or bridge) is an edge in a connected graph whose deletion yields a
disconnected graph.

Which of the above graphs have cut-edges?

Fleury’s Algorithm

• Preliminaries. Verify that Euler’s theorems do in fact guarantee the
existence of an Euler circuit (or path), otherwise we are wasting our
time.

• Setup. Draw two copies of the graph side-by-side. Label the left
graph FUTURE, and the right graph PAST.

• Start. Choose a starting vertex. If we are looking for an Euler circuit,
we can start anywhere. If we are looking for an Euler path, we must
start at an odd vertex.

• Walk. On the FUTURE graph, choose an edge to walk down, and
erase it. If you have a choice, don’t choose a cut-edge. However, if
you have no other choice, take it.

• Finish. Repeat the previous step until you can’t travel anymore.
When you can’t travel any more, the circuit (or path) is complete.



HW emendation: SKIP problems #41, 43 in Ch. 5.

Ch. 6. The traveling salesman problem—REV 2

1. Hamilton paths and Hamilton circuits

Definition 15. A Hamilton path in a graph G = (V,E) is a path that visits every vertex in V exactly once.

Definition 16. A Hamilton circuit in a graph G = (V,E) is a path that visits every vertex in V exactly once, and then
ends at the vertex at which the path began.

Ex. Suppose that a graph G = (V,E) has an Euler circuit. Which of the following statements is true?

(a.) G must have an Euler path.

(b.) G must not have an Euler path.

(c.) G may or may not have an Euler path.

Ex. Suppose that a graph G = (V,E) has a Hamilton circuit. Which of the following statements is true?

(a.) G must have a Hamilton path.

(b.) G must not have a Hamilton path.

(c.) G may or may not have a Hamilton path.

Ex. Verify and extend your answers to the previous two exercises by determining which of the following graphs have Euler
circuits, Euler paths, Hamilton circuits, and Hamilton paths.

graph ! 1 2 3 4 5 6
Has an Euler path?

Has an Euler circuit?

Has a Hamilton path?

Has a Hamilton circuit?

We have easy tests for determining whether any given graph has an Euler circuit or an Euler path. It is natural to think
that there must be such a test for Hamilton circuits and paths—but there isn’t.

However, some success has been had in proving that any graph satisfying a given property must have a Hamilton circuit
(or path). We call such a property a su�cient condition (for the existence of a Hamilton circuit or path).

Theorem 5. Dirac’s theorem.

A connected graph on N vertices such that every vertex has degree at least
N

2
must have a Hamilton circuit.



Ex. Prove that KN has a Hamilton circuit for every N > 2. (In this context, the word “prove” means: “use known facts

to make a bulletproof argument that KN has a Hamilton circuit, no matter what N is.”)

Proof.

Since KN is complete, every vertex in KN has degree N �1. It is enough to prove that N �1 is greater than or equal

to
N
2

, because if this is so, then it follows by Dirac’s theorem that KN is guaranteed to have a Hamilton circuit.

Working backwards, we find that the last inequality (1) written below follows from the (given) fact that N > 2.

N > 2. (5)

`
2N

´
�N >

`
N + 2

´
�N. (4)

2N > N + 2 (3)

N >
N
2

+ 1. (2)

N � 1 >
N
2

. (1)

2. The number of Hamilton circuits in a complete graph

Recall from Chapter 1 that the complete1 graph KN on N vertices has N(N�1)
2 edges. Of course, we didn’t call it “the

complete graph KN” in Chapter 1: we called it an “arrow diagram,” and we used it to keep track of all the pairwise
comparisons between N candidates.

We can show that KN has N(N�1)
2 edges more easily now, i.e. without recourse to pictures of shaded boxes and additional

formulas, because we have developed the language of graph theory.

Ex. I am thinking of a positive number N . Without knowing what N is, say what the degree of a vertex in KN is. Use
your answer to determine the sum of all the degrees in KN . Then use the Handshaking Theorem (Theorem 1) to find
the number of edges in KN .

Proof.

The degree of a vertex in KN is N � 1, because each vertex is adjacent to every other vertex by definition of a

“complete” graph.

Since there are N vertices in KN , again by definition of KN (as “the complete graph on N vertices”), it follows that

the sum the degrees of all the vertices in KN is

N(N � 1).

Let the letter e stand for the number of edges in KN . By the Handshaking Theorem, the sum of the degrees of all

the vertices in KN is double the number e of edges in the graph, so

2e = N(N � 1).

Therefore, the number of edges in G is half the sum of the degrees, which we have shown to be N(N � 1). That is,

e =
N(N � 1)

2
.

1See your Chapter 5 notes for a discussion of complete graphs.



It is in fact quite obvious from looking at K2, K3, K4, and K5 that for small2 values of N � 3, the complete graph
KN must have a Hamilton circuit: we can see it! In cases like these, when it is apparent that the graph has a Hamilton
circuit, a more interesting question is: How many di↵erent Hamilton circuits are there?

We are all too lazy to count the number of Hamilton circuits in KN when N is not tiny. The table on page 203 shows
that a complete graph has over 3 million di↵erent Hamilton circuits when the graph has a measly 11 vertices.

�� Combinatorica`
Partition⇤Table⇤ShowGraph⇤CompleteGraph⇤n⌅⌅, �n, 1, 20⇥⌅, 5⌅ ⇧⇧ TableForm

Out[20]//TableForm=

FIGURE 1. Complete graphs, drawn by Wolfram Research’s Mathematica software (available on all ACC
Learning Lab computers). The two lines of code at the top of the figure su�ce to generate the picture shown.

2Of course the graph K0 on 0 vertices has no Hamilton circuit. Is there any problem finding a Hamilton circuit in K1? What goes wrong
in K2?



Even when N = 6, counting all the Hamilton circuits would be brutally tedious.
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FIGURE 2. Mathematica again. Code (much uglier this time) appears in the footnote.3

Now, in the previous table of Hamilton circuits (FIGURE 2), we see that the first and last circuit appear to be identical.
The same thing happens when we ask the computer to find all the Hamilton circuits in K5:
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FIGURE 3. Hamilton circuits in K5.

What is going on here? Why does the computer appear to be counting the same circuit twice?

3 ShowAllHamiltonianCycles[NN , columnwidth ] := Module[H = HamiltonianCycle[CompleteGraph[NN],
All], ShowGraphArray[Partition[Table[Highlight[SetGraphOptions[CompleteGraph[NN], VertexColor!Yellow,
VertexStyle!Disk[Large]], Partition[H[[k]], 2, 1]], k, 1, (NN - 1)!], columnwidth], VertexNumber!True,
VertexNumberPosition!Center]]; ShowAllHamiltonianCycles[6, 12]



The reason is that the circuits 1, 2, 3, 4, 5, 1 and 1, 5, 4, 3, 2, 1 are di↵erent circuits, in so far as the edges come in a
di↵erent order—

leftmost circuit in Fig. 3: 1, 12, 23, 34, 45, 51, 1
rightmost circuit in Fig. 3: 1, 15, 54, 43, 32, 21, 1

—but the two circuits “look” the same if we ignore the order and write both paths as a set4 of edges:

{12, 23, 34, 45, 51} = {15, 54, 43, 32, 21}.

That is, the left hand side and the right hand side are exactly the same set.

We will stipulate that two circuits that consist of the same edges, traversed in a di↵erent order, are to be considered two
di↵erent circuits.

By contrast, we say that it doesn’t matter where you start a Hamilton circuit. That is, using K4 to visualize the

situation,
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FIGURE 4. Hamilton circuits in K4.

we will say that the circuits
1, 12, 23, 34, 41, 1

2, 23, 34, 41, 12, 2

3, 34, 41, 12, 23, 3

4, 41, 12, 23, 34, 4

are all considered to be the same circuit.

We will call the vertex at which a circuit begins and ends the reference point, as the book does. But observe that our
notation for a circuit is slightly di↵erent than Tannenbaum’s! We specify the edges, where Tannenbaum gives only the
vertices in the circuit.

When we are counting Hamilton circuits, we must be sure to specify a reference point. We then list each Hamilton circuit
just once—because, for example, once we have counted (let’s say) 1, 12, 23, 34, 41, 1, we are guaranteed by our use of 1
as a reference point not to count any of the (identical) circuits 2, 23, 34, 41, 12, 2, etc.

Be consistent about your reference point. All the circuits you count must begin and end at the same reference point,
which we choose once and for all (that is, for the duration of such a counting problem).

4Recall that the order in which members are listed does not matter in a set, and that the order in which endpoints X and Y are written in
an edge XY = Y X does not matter in a graph whose adjacency matrix is symmetric.



Ex. How many distinct Hamilton circuits are there in KN?

Hint: Pick a reference point. How many choices are there for the second point in a Hamilton circuit starting at the reference point
you picked? Now, for each of those choices of the second point in a Hamilton circuit, how many choices are left for the third point?
So how many ways are there to pick the first 2 vertices in a Hamilton circuit, given a reference point fixed once and for all? Once
you have answered the latter question, you should be ready to extend your reasoning to picking all N vertices.

Proof.

There are N ways to choose the reference point, N � 1 ways to choose the second point, N � 2 to choose the third,

and so on. Thus there are

N ⇥ (N � 1)⇥ (N � 2)⇥ · · ·⇥ 3⇥ 2⇥ 1

Hamilton circuits altogether.

However, these are not distinct. In fact, each individual Hamilton circuit has been counted N times, since it does not

matter which vertex we write as the reference point.

Therefore, there are only

ˆ
N ⇥ (N � 1)⇥ (N � 2)⇥ · · ·⇥ 3⇥ 2⇥ 1

˜
÷ N = (N � 1)⇥ (N � 2)⇥ · · ·⇥ 3⇥ 2⇥ 1

distinct Hamilton circuits.

The factorial k! of a natural5 number k is the number

k! = k ⇥ (k � 1)⇥ (k � 2)⇥ · · ·⇥ 3⇥ 2⇥ 1.

Your calculator6 will have an x! or n! key which you can use to compute factorials.

Ex. How many distinct Hamilton circuits are there in KN?

Ex. Compute.

(a.) 15!

(b.) 30!

(c.)
30!
15!

Ex. Given that 10! = 3, 628, 000, find 9! without a calculator.

5A natural number is a positive integer: that is, one of the numbers 1, 2, 3, 4, 5, . . . .
6See syllabus for calculator requirements.



3. Traveling salesman problems

Examples 6.5 and 6.6 (pages 204-205) suggest that the metaphor of a traveling salesman can be applied to problems faced
by NASA engineers. We may see one or two problems that involve a salesman, but the traveling salesman problem in
general means that the following optimization question is to be answered:

Is there a least expensive (in time, money, etc.) circuit which visits every vertex in a given (complete) graph?

In this chapter, we will often be looking at complete graphs, so the existence question has already been answered (see
above). If we find a Hamilton circuit which is cheaper than any other Hamilton circuit, we call it an optimal route (or
solution)

Definition 17. A weighted graph is a graph each of whose edges is labeled with a number, called the weight of that
edge. If G = (V,E) is a weighted graph, and XY is an edge in E, we write w(XY ) for the weight of XY .

Definition 18. The (total) weight of a walk in a weighted graph is the total of the weights of every edge in the walk.

For example, for the above graph, we write

w(A, AE, EC,CA,AE, E) = w(AE) + w(EC) + w(CB) + w(BC) = $9.

Since paths and circuits are walks, we can compute their weights, too.

Ex. List all the AD-walks, and compute the total weight of each. Which one has the lowest weight?

A, AG,GB, BF, FC, CE, ED, D 100 + 50 + 60 + 20 + 30 + 20 = 280

A, AG,GF, FC, CE, ED, D 100 + 15 + 20 + 30 + 20 = 185

A, AG,GB, BF, FC, CD, D 100 + 50 + 60 + 20 + 55 = 285

A, AG,GF, FC, CD, D 100 + 15 + 20 + 55 = 190

The walk with the lowest weight is A, AG,GF, FC, CE, ED, D .



STRATEGIES FOR FINDING A HAMILTON CIRCUIT IN A WEIGHTED GRAPH

Strategy 1: Exhaustive search. List all possible Hamilton circuits. Calculate the total weight of each circuit. The
optimal route is the circuit with the least total weight.

We call two circuits mirror image circuits if they contain the same vertices in exactly the reverse order. For example,
ABCDE and AEDCB are mirror images.

Ex. Use a tree diagram to list all the Hamilton circuits in the following graph. Which Hamilton circuits are mirror image
circuits? Compute the total weight of each of the Hamilton circuits you found.



Ex. Find the optimal Hamilton circuit by exhaustive search. Start by drawing a tree diagram that shows all the Hamilton
circuits in the following graph.



Strategy 2: Cheapest neighbor. (This method only works for complete graphs.) Pick a reference point. From there,
travel to a neighboring vertex along the least expensive available edge. From each new vertex, travel along the least
expensive available edge among those leading to a neighboring vertex which has not yet been visited. When every vertex
has been visited, return to the reference point.

Strategy 2 is not guaranteed to discover the optimal route—but it is typically much faster than exhaustive search.

Ex. Find the cheapest-neighbor circuit for starting vertex A.



Ex. Find the cheapest-neighbor circuit for starting vertex U . Find the cheapest-neighbor circuit for starting vertex V ,
for starting vertex W , for starting vertex X, Y , and Z. Which of the six cheapest-neighbor circuits is cheapest?



ALGORITHMS FOR FINDING A HAMILTON CIRCUIT IN A WEIGHTED GRAPH

Brute-force algorithm

1. Make a list

2. Calculate

3. Report

Nearest-neighbor algorithm

1. Designate a starting vertex (or use the given starting vertex).

2. From the starting vertex,

3. For each successive vertex,

4. Repeat until

5. From the last vertex, travel directly to the starting vertex.

Repetitive nearest-neighbor algorithm

1. Designate a starting vertex (or use the given starting vertex).

2. Carry out the nearest-neighbor algorithm for each

3. Re-write each nearest-neighbor circuit as a circuit that starts and ends at the designated starting vertex.

An algorithm can be optimal and/or e�cient.

An algorithm is called optimal if it always finds an optimal solution when implemented correctly.

An algorithm is called e�cient if the amount of computational e↵ort to implement the algorithm grows in some reasonable
proportion when the size of the input to the problem increases.

The brute force algorithm is optimal, but terribly ine�cient. (See p. 211.) What about the nearest-neighbor algorithm?
What about the repetitive nearest-neighbor algorithm?



Ch. 7. Networks

1. Trees

Definition 19. A tree is a connected graph with no circuits.

FIGURE. Four trees.

Ex. Each of the letters of the Roman alphabet (A, B, C, . . . , Z) determines a graph, once we add vertices wherever

two or more (possibly curved) line segments meet, and wherever a line segment ends.

Which capital letters in the Roman alphabet determine trees (give at least 3 examples)? Which do not determine trees

(give at least 3 examples)?



2. Spanning subgraphs

Definition 20. A network is a connected graph.

Definition 21. A subgraph of a graph G = (V,E) is a graph G0 = (V0,E0) such that E0
is a subset of E. That is, we call

G0
a subgraph of G if every edge of G0

is an edge of G. We say that G0 spans G (or that G0
is a spanning subgraph)

if every vertex of G is a vertex of G0
: that is, if V is a subset of V0

.

FIGURE. A graph G (at left) and a subgraph G0
(at right) which does not span G.

Practical problems involving networks often involve finding a spanning subgraph G0
of an existing network G.

Ex. 7-1. The following graph represents the road network between 7 mining towns deep in the heart of the Amazon jungle.

A telephone company needs to provide Internet service to the 7 towns, and the only practical option is to bury fiber-optic

cable along the already existing roads connecting the towns. In the graph below, the cost of putting a fiber-optic cable

along each road is given as a weight in millions of dollars.

FIGURE 7-1.

The telephone company needs to find a network which

(i.) utilizes the existing network of roads,

(ii.) connects all the towns, and

(iii.) has the least cost.

Translating these requirements to the language of graph theory, we get

(i.) The network must be a subgraph of the existing road network.

(ii.) The network must span the existing road network.

(iii.) The network must be an optimal solution to the problem: that is, the total weight of the network must be as small

as possible.



Since we are looking for an optimal solution, it follows that the spanning subgraph we are looking for must have no

circuits.

Why not? (Consider the subgraph, shown in thick edges, of the following graph.)

We can now give a formal definition that summarizes the requirements of the telephone company (see Figure 7-1, previous

page).

Definition 22. A tree is a connected graph (that is, a network) with no circuits.

Definition 23. If a subgraph G0
of a graph G is a tree, we call G0

a spanning tree for G if G0
spans G (that is, if all

the vertices of G are vertices of G0
).

Definition 24. Among all the spanning trees for a given graph G, the minimal spanning tree for G is the one with

least total weight.

FIGURE. Three di↵erent spanning trees (thick lines) of the graph given in Figure 7-1 (shown here as thin lines).

The total weight of each spanning tree is computed by adding the weights of every edge in the tree.

Are any of the three graphs shown above minimal spanning trees for the road network?

Why or why not: how would you justify your answer?



3. Properties of trees

Some graphs are “more” connected than others. The complete graph KN is of course the “most” connected.

Trees occupy an important niche between disconnected graphs and graphs which are overconnected. A tree is special in

so far as it is barely connected : this means several things.

Definition 25. A graph G is called k-connected if between any two vertices X and Y of G there are at least k distinct

XY -paths in G. A k-connected graph is called overconnected if k � 2. A graph G is called barely connected if

between any two vertices X and Y there is one and only one XY -path in G. (You need not memorize the definitions in
this paragraph.)

We now provide proofs of a few properties which all trees satisfy. (Recall that a proof is an airtight argument that a

mathematical proposition is true without exception, e.g. for every tree.)

Theorem 6. Every tree is barely connected. That is, given any two vertices X and Y of any tree G, there is one and

only one XY -path in G.

Proof.

Let X and Y be two vertices in a tree G.

Since a tree is by definition connected, there is at least one XY -path in G (by definition of connectedness).

Either there is a second, distinct XY -path in G, or there is not. We will show that it is impossible that there be a
second XY -path in G.

Assume there is a second XY -path (shown as a dashed line) in G. Then there must be a circuit somewhere in G:
specifically, in the subgraph of G made up of the two XY -paths:

But since G is a tree, G cannot possibly have a circuit (by definition of a tree).

When we assumed that there is a second XY -path, we were able to argue that G has a circuit. Since we know that it
is impossible for G to have a circuit, we conclude that our assumption was incorrect: that is, we conclude that there
is no second XY -path. And this is what was to be shown.

Definition 26. A cut-edge is an edge in a connected graph whose deletion disconnects the graph.

Corollary to Theorem 6. Every edge in a tree is a cut-edge.

Proof.

Let G be a tree. Then (by definition of a tree) there are no circuits in G.

Assume that there is an edge AB of G such that AB is not a cut-edge. (We will show that this assumption leads to
an impossibility.)
By definition of a cut-edge, deleting AB does not result in a disconnected graph.

In particular, there must be a path from A to B which does not pass through AB. Complete the proof by arguing

that something impossible happens.



Theorem 7. If there is one and only one path joining any two vertices of a graph G, then G is a tree.

Proof.

Let G be a graph such that there is one and only one path in G joining any two given vertices of G.

A tree is a connected graph with no circuits. We need to show that

(i.) G is connected, and

(ii.) G has no circuits.

By definition, G is connected because every two vertices of G are joined by a path: this proves (i).

Prove (ii) by answering the question:

Why does G have no circuits?

(Hint: Assume G does have a circuit, and explain what goes wrong!)

Theorem 8. If every edge in a graph G is a cut-edge, then G is a tree.

Proof.

Let G be a connected graph such that every edge is a cut-edge.

We need to show that G has no circuits.

Assume that G has a circuit, and let AB be an edge in the circuit.

Complete the proof by arguing that something impossible happens.

Theorem 9. A tree on N vertices has N � 1 edges.

FIGURE. Adding edges one at a time, being careful not to form a circuit, we see that 7� 1 edges su�ce to join 7 vertices.

(This figure is not a proof for all N , but it demonstrates Theorem 9 in the particular case when N = 7.)



Don’t spend too much time deciphering the proofs of the Lemma and the Theorem on this page. However, you should
try to convince yourself that the Lemma and the Theorem are in fact true! (Take a moment with the Lemma before

reading its proof, and see if you can convince yourself. Justifying Theorem 10 to oneself requires a bit more imagination.)

Lemma to Theorem 10. A circuit 1, 2, 3, . . . , n� 1, n, 1 has length n.

Proof.

A path joining 2 vertices has 1 edge, and every time we add 1 vertex to those joined by the path, we add 1 more edge:

In general, a path joining n vertices has exactly n� 1 edges.

Let 1, 12, 23, 34, 45, . . . , (n�2)(n�1), (n�1)n, n1, 1 be a circuit joining n vertices (some of which may be repeated).

The path 1, 12, . . . , (n� 1)n, n from vertex 1 to vertex n has length n� 1.
Adding the edge n1 to complete the circuit, we now have n edges.

The proof of Theorem 10 is markedly more di�cult than any of the proofs we have seen so far, and you are not responsible

for understanding the nitty gritty details of the argument.

Theorem 10. If a network G with N vertices has N � 1 edges, then G is a tree.

Proof.

We will show that:

If there is a circuit in a graph G with N vertices and N � 1 edges, then G is disconnected.

It will then follow that:

If G is a connected graph with N vertices and N � 1 edges, then G has no circuits.

Let G be a graph with N vertices and N � 1 edges.
Let k be the length of the longest circuit (shown in thick edges) in G.

There are only N �1 edges in G so, by the Lemma, since a circuit joining k vertices has length k, we have k  N �1.
Then there are N � k � 1 vertices not on the longest circuit in G.
Since there are only N � 1 edges in G, it follows that (*) there is a vertex X of G such that there is no path from X
to the circuit. Thus G is disconnected.

To see this (*), observe that if each of the N �k vertices were attached by a path of length � 1 to some vertex in the
longest circuit, this would add at least (N � k)⇥ 1 edges to the k edges we already know about in the longest circuit.
We would then have k edges (in the circuit) plus at least (N � k)⇥ 1 edges (in paths attached to the circuit), which
is a total of at least N = k + (N � k) > N � 1 edges. Therefore, not all of the N � k vertices not on the circuit can
be attached by paths to the circuit: there simply aren’t enough edges in the graph.

Therefore, if G is a network with N vertices and N � 1 edges, then G is a tree.



Ch. 11. Symmetry
Textbook: Peter Tannenbaum, Excursions in Mathematics, 6th edition.

1. First definitions for geometry. Rigid motions.

Reading: Section 11.1

Perhaps the most important textbook ever written is Euclid’s Elements, a work of geometry written in ancient Greece.
We don’t know how much of Euclid’s book was his own original invention, but we do know that many of the results in his
Elements had appeared previously, both in Greece and in other cultures.1 The book’s originality is mainly due to its style.
Every fact which is presented is immediately followed by a mathematical “proof” (or argument) written in a perfectly
meticulous manner: each sentence in the proof follows immediately from the preceding sentences, with no illogical jumps2

or missing steps left for the reader to fill in.

The Elements begins with a problem which always accompanies the first few steps a newborn science must take: we
might call it the Problem of First Definitions. Geometry, like any science, requires that there be precise definitions of the
things to be studied. But when we set out to write our definitions, we have no precise definitions to which we can refer,
so precisely how can we speak? You will have to decide for yourself whether Euclid’s solution to the Problem of First
Definitions was a happy one.

Euclid’s Elements begins with the following definitions.

Definition 1. A point is that which has no part.

Definition 2. A line is breadthless length.

Definition 3. The ends of a line are points.

Definition 4. A straight line is a line which lies evenly with the points on itself.

Definition 5. A surface is that which has length and breadth only.

Definition 6. The edges of a surface are lines.

Definition 7. A plane surface is a surface which lies evenly with the straight lines on itself.

Are these definitions perfectly clear? We will not give our own formal definition of “line” and “plane,” which for us will
be undefined terms. However, once we have “defined” the first few (imprecisely defined) terms, we must ensure that
every definition from then on is perfectly precise. In this way, the validity of theorems later to be proven is guaranteed, so
long as we accept the first few definitions. Mathematics is sometimes called the hypothetical science for this reason—it
doesn’t absolutely prove anything. But it can prove quite a lot if we all agree to certain hypothetical definitions.3

The next definition—our first “real” definition—introduces the topic we will be studying throughout this chapter.

A rule for moving each point in the plane to a new position is called a plane transformation.

In other words, a plane transformation—call it M—moves each point in the plane from its starting position P to its
ending position P 0. In symbols, we write this fact as

M(P ) = P 0 or M : P 7! P 0

but you are not required to use or know this notation (called function notation).

1We know most about China, India, and the Arab world, where mathematical discovery and innovation often flourished in the millenia

before and during the European Dark Ages.
2Well, almost none. Modern mathematicians are able to point out a few serious logical ga↵es on Euclid’s part, and after reading this page,

you should be, too.
3Another fundamental mathematical idea which may seem extraordinarily di�cult to define is a number, since the definition has to be broad

enough to include irrational numbers like ⇡ and complex numbers like
p
�1, which are far removed from our experience and common-sense

intuitions. Modern mathematicians have indeed given a precise definition of what it means to be a number, but as we all know, it’s perfectly

possible to do arithmetic without being able to say with complete precision what a number is.



M�!
FIGURE. A plane transformation M which moves the point at starting position P to the ending position P 0

.

We can define a plane transformation by specifying the following rule:

If any figure appears drawn in the plane, pick it up and move it.
Move every figure that appears in exactly the same way.

A plane transformation defined by such a rule does not alter the size or shape of any figure. This is (obviously) because
picking up an object and moving it somewhere else in the plane does not change its shape.4

Definition. A plane transformation which does not change the shape or size of any plane figure is called a rigid motion
(or isometry).
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FIGURE.

A rigid motion, which is a plane transformation, does not change

the shape of the circle.

But moving the circle around on the curved surface above the

plane—a portion of a shape called an astroidial ellipsoid—

definitely does!

In particular, a rigid motion cannot involve any ripping, stretching, shrinking, or bending (compare the plane transformation
at the top of this page).

Suppose you and I each have a plane in front of us, upon which lies a piece of paper in the shape of a footprint. Say I
move the footprint on my plane as shown in the figure below at left, and you move the footprint on your plane as shown
below at right. The footprint ends up in the same place, even though we did not move it in the same way. When this
happens, we call the two rigid motions equivalent.

4This is not true for spaces other than planes: planes are flat. The blue surface in the figure in the middle of this page is an example of

a space that is not flat. Our universe is another example. The three-dimensional space we see is curved, in the sense that the curvature of

space changes in the vicinity of a massive object (picture a bowling ball resting on a bedsheet held aloft by a circle of people). In particular, a

black hole changes the shape of anything near it, provided we can all agree on what we mean by the word “shape”. . .



Definition. Two rigid motions are called equivalent rigid motions if they both move a given figure in starting position
A to the same ending position B.

Our definition implies that we can completely characterize a rigid motion by specifying the starting position and ending
position of an object being moved. What happens in between—that is, the particular details of the motion, shown as
arrows in the figure at the bottom of the previous page—is unimportant for our purposes.

Ex. 1.
The following image defines a rigid motion, call it M.

Determine what M does to the plane shown at left by drawing the ending position of each figure on the plane shown at
right. (The grid lines are provided for reference only.)

M�!

How would you describe this transformation in words (that is, without using pictures)?



Ex. 2.
The following image defines a rigid motion, call it M.

Determine what M does to the plane shown at left by drawing the ending position of each figure on the plane shown at
right. (The grid lines are provided for reference only.)

M�!

How would you describe this transformation in words (that is, without using pictures)?



Ex. 3.
The following image defines a rigid motion, call it M.

Determine what M does to the plane shown at left by drawing the ending position of each figure on the plane shown at
right. (The grid lines are provided for reference only.)

M�!

How would you describe this transformation in words (that is, without using pictures)?



Ex. 4.
The following image defines a rigid motion, call it M.

Determine what M does to the plane shown at left by drawing the ending position of each figure on the plane shown at
right. (The grid lines are provided for reference only.)

M�!

How would you describe this transformation in words (that is, without using pictures)?



It turns out that every rigid motion is one of the four rigid motions we have just seen.

basic rigid motion informal description

reflection flipping across a line
rotation pivot around a point

translation sliding along a line
glide reflection slide, then flip across the line of sliding

These four rigid motions will be called the basic rigid motions of the plane.

We will examine each of the four basic rigid notions in more detail. Each of the four will be given a symbol: F` for
reflections, RP,✓ for rotations, Tv for translations, and Gv,` for glide reflections. These symbols will be explained as we
go.

2. Fixed points. Reflections. Composition of rigid motions.

Reading: Section 11.2

When a figure S is moved by a rigid motion M, the figure in its new position is called the image of S under M.

In particular, if M moves a point in position P to a new position P 0, we call P 0 the image of P under M.

A reflection is a rigid motion in which every figure is moved so that its image is the “mirror image” of its starting
position.

This definition begs the question, What do we mean by “mirror image”? To have a mirror image, one must have a mirror.
For a reflection, this “mirror” is a line, a line we will usually call `.

The symbol F` will denote reflection in a given line `.

Ex. 5a.
Find the images under the reflection F` of the three points A, B, and C.

Ex. 5b.
A point whose image under a rigid motion M is the same as its starting position is called a fixed point of M.

Find a fixed point for the reflection F`. Label it in the above picture, say as P .



How many fixed points does F` have?



Ex. 6.
If ` is the dashed line in the picture below, what is the image under F` of the triangle?

Ex. 7a.
Let m be the dashed line in the picture below. Draw a triangle whose image under Fm is exactly the same as its starting
position.

Ex. 7b.
Identify the fixed points of Fm.



A rigid motion is called improper (or opposite) if it reverses orientation. Otherwise, we call the rigid motion proper (or
direct).

Ex. 8a.
The symbol � is called composition. We write M � N to mean, Do N first, then M. (Note that the order is right-to-
left).

In particular, Fm � F` means, Reflect across the line ` first, and then reflect across the line m.

If k, `, and m are three lines (possibly not all distinct), which of the following rigid motions are proper, and which are
improper?

1. Fk

2. F` � Fk

3. Fm � F` � Fk

Ex. 8b.
Let ` be a line. Describe the e↵ect of the rigid motion F` � F` in words.

Ex. 8c.
Draw two (distinct) parallel lines on the grid provided, and label them ` and m. Describe the e↵ect of the rigid motion
Fm � F` in words.



3. Angle measures. Rotations. The identity motion.

Reading: Section 11.3

To carry out a reflection, we need only one piece of information: we need to know what the line ` of reflection is.

What do we need to know if we want to carry out a rotation? We need two things: a point P around which to rotate,
and an angle with measure ✓ (given in degrees or radians, but we will always use degrees).

The point P is called the rotocenter (or the center of the rotation).

We really ought to call ✓ the measure of the angle of rotation, but we will usually be sloppy and omit the phrase “the
measure of.”

One way or the other, we must indicate to the reader which way an angle opens. Tannenbaum does this in words, by
saying clockwise or counter-clockwise.

We will usually use the standard practice of mathematicians, which is as follows. A positive angle measure indicates that
the angle opens counter-clockwise. A negative angle measure indicates an angle that opens clockwise.

The symbol RP,✓ will denote the rotation with rotocenter P , and angle of rotation ✓.

The diagram below shows some angle measures. Each angle measure refers to the angle formed where the labeled line
segment meets the half-line which begins at the center of the circle, and “ends” at the arrowhead labeled x.

FIGURE. Angle measures appear on the inside of the circle.

We will not use radians, which appear here as fractional multiples of ⇡.
All information outside the circle, which is used in other math classes, may also be disregarded.

You are responsible for understanding angle measures given in degrees (
�
).

Ex. 9.
Are rotations all proper? What about the composition of two rotations? Does your answer to the last question change if



we replace the word “two” with the word “three”? How about the composition of more than three rotations?



The following screenshot of an applet at http://www.cut-the-knot.org/Curriculum/Geometry/RotationTransform.shtml
shows the e↵ect of doing one rotation, followed by a second rotation around a di↵erent rotocenter.

Ex. 10a.
A rotation RP,✓ is shown in the picture below. Find two di↵erent possible values for the angle measure ✓.



Ex. 10b.
A rotation RP,✓ is shown in the picture below. Find two di↵erent possible values for the angle measure ✓.

The identity motion is the rigid motion defined by doing nothing. That is, we don’t move any points at all.

Now, a rotation RP,360� of 360� around any given point P moves every point exactly back to where it started. Thus
every point in the plane is a fixed point of RP,360� .

Ex. 11a.
Suppose P is a point in the plane. Find an angle measure ✓ such that RP,45� �RP,✓ is equivalent to the identity motion.
Then find a di↵erent value of ✓ which also works.

Ex. 11b.
Suppose P is a point in the plane. Find an angle measure ✓ such that RP,45� �RP,✓ is equivalent to RP,180� .



Ex. 12.
For how many di↵erent rotations with rotocenter P is the image of the triangle exactly the same as the starting position
of the triangle?

Ex. 13.
Suppose P is a point in the plane. How many fixed points does RP,✓ have? What are they? Does it matter what the
value of ✓ is?

If we are given a point P and its image P 0 under some unknown rotation RX,✓, can we identify the rotocenter X? (Say
no!) In fact, any point on the perpendicular bisector of line segment PP 0 might be the rotocenter, so long as we don’t
already know what the angle of rotation ✓ is. (See Figure 11-8, p. 379.)

If we are given two points P and Q, and their images P 0 and Q0, we can determine the rotocenter as follows.

1. Find the perpendicular bisector of PP 0.

2. Find the perpendicular bisector of QQ0.

3. If the two perpendicular bisectors are di↵erent, then the rotocenter is the point at which the two perpendicular
bisectors intersect. (See Figures 11-8a and 11-8b.)

4. If the two perpendicular bisectors are the same, then the rotocenter is the point at which the half-lines
��!
PQ and���!

P 0Q0 meet. (See Figure 11-8c.)



4. Translations. Inverse motions.

Reading: Section 11.4

What information do we need in order to carry out a translation?

A vector (usually represented graphically by an arrow) is a and a .

Vectors are most often defined by joining two points—a foot (or initial point) A, and a head (or terminal point)
B—with an arrow. The length of the arrow and its direction characterizes the displacement of B relative to A: in other
words, how much one should move the point A to “carry” it to the point B, and in what direction.

If v is a vector defined by an arrow from A to B, we use the symbol

�v

to mean, “the vector in the opposite direction (from B to A) with the same length as v.”

Ex. 14.
Draw a vector which moves a point A by (roughly) 1 inch, in the northeast direction. Then draw two more vectors which
describe exactly the same motion.

A translation is the rigid motion defined by sliding each object by the length of a vector, in the direction of that vector.

The symbol Tv will denote translation by a given vector v.

Ex. 15a.
I am thinking of a vector v. How many fixed points does the translation Tv have?

Ex. 15b.
A translation is proper or improper?



Suppose M is a rigid motion. Then the inverse motion for M is a rigid motion N whose composition (in either order)
with M is the identity motion.

In symbols, the statement that “N is the inverse motion for M” means that both

M �N and N �M

are equivalent to the identity motion.

Ex. 16.
I am thinking of a vector v. Find a vector w such that Tw � Tv is equivalent to the identity motion.

In general,
Tw � Tv =

The symbol M�1 will denote the inverse motion for a given rigid motion M.

In general, ✓
Tv

◆�1

=

Ex. 17.
Find a pair of rigid motions M and N such that

M �N and N �M

are not equivalent.



5. Glide reflections. Commuting rigid motions.

Reading: Section 11.5

We say that M and N commute5 (with each other) if

M �N and N �M

are equivalent.

Ex. 18.
Find a pair of rigid motions M and N such that

M �N and N �M

are equivalent. Verify that M �N and N �M are equivalent by drawing a triangle T , and the image of T under each of
the two “compound” (or “laundry list”) transformations M � N and N �M, showing each intermediate position of the
triangle under the transformations with dashed or colored lines.

(You may want to doodle on a piece of scratch paper before filling in your answer here.)

5The word may remind you of a certain property of addition and multiplication: namely, the two commutative properties a + b = b + a
and a · b = b · a. For “ordinary” numbers, these two properties always hold. But for other types of mathematical objects, they may not. For

example, addition of matrices A+B is commutative, but multiplication is not, since it is not always true that AB = BA when A and B are

two n⇥ n matrices. Returning to the present context, certainly composition is not commutative. That is, if M and N are two rigid motions,

then it need not be true that the two “compound” rigid motions M �N and N �M are equivalent. (You are not responsible for understanding

all that has been said in this footnote, but you should be able to convince yourself that the sentence before the current one is a fact.)



Proposition.
True or false:

Any translation Tv commutes with any reflection F`.

(If true, explain why. If false, give an example that demonstrates why not.)

A glide reflection is the composition of a translation Tv and a reflection F`, provided that the vector v is parallel to the
line `.

Ex. 19a.
I am thinking of a glide reflection Gv,`. How many fixed points does Gv,` have? Does changing the relationship between
v and ` change your answer?

(Show your work by picking a suitable v and ` of your choice, and then drawing a figure T and its image under Gv,`.
Draw the intermediate position with dashed or colored lines.)

Ex. 19b.
Do there exist proper glide reflections? To put the same question in other words: Are all glide reflections improper?



Ex. 20.
If we are given a point P and its image P 0 under an unknown glide reflection Gv,`, is that enough information for us to
carry out the glide reflection for other figures?

Ex. 21.
Find the inverse motion for Gv,`, where v is a given (but unknown) vector and ` is a given (but unknown) line parallel to
v.



6. Symmetry as a rigid motion

Reading: Section 11.6

A rigid motion that moves a geometric figure back onto itself is called a symmetry of the figure.

Ex. 22.
Find all symmetries of a square.

Ex. 23.
Find all symmetries of the propeller shown in the figure.

FIGURE. The Hamilton Standard 54H60 propeller.



We say that two objects have the same symmetry type if they have exactly the same symmetries.

For example, the symmetry type of the square is called D4 (or dihedral-4). (The 4 stands for four reflections and four
rotations.)

Ex. 24.
Find all symmetries of the propeller shown in the figure. Its symmetry type is called Z5 (or cyclic-5).

FIGURE. A propeller on display at the Singapore Changi International Airport.

Ex. 25.
Find all symmetries of the shape shown in the figure.

FIGURE.



Ex. 26.
Find all symmetries of the shape shown in the figure. Its symmetry type is called D1 (or dihedral-1).

FIGURE.

Ex. 27.
The playing card called “six of spades” is shown below. Two di↵erent versions of the same playing card are shown. Find
all the symmetries of the six of spades. Its symmetry type is called Z1 (or cyclic-1).

FIGURE. Two versions of the same playing card.



Ex. 28.
Find all symmetries of the figure. Its symmetry type is called

FIGURE. A familiar shape.

Summarizing, we have seen three broad categories of symmetry type:

• Cyclic symmetry types ZN

• Finite dihedral symmetry types DN

• The infinite dihedral symmetry type D1



Ch. 12. Geometry of fractal shapes

1. What is a fractal?

Reading: Section 12.1

A fractal is a geometric figure in which more and more features appear as the magnification increases.

The hallmark of a fractal is that, whenever we zoom in on a piece of it, we discover new features at the smaller scale
which resemble features found at the larger scale. This phenomenon is called self-similarity.

• In a fractal that is approximately self-similar, features at a smaller scale resemble, but are not identical to, features
found at the larger scales.

Here are some examples of approximately self-similar fractal shapes:

Romanesco broccoli Michael F. Barnsley, “Wattle”

http://www.superfractals.com/

A woodburn fractal

• In a fractal that is exactly self-similar, the same patterns are exactly repeated as we zoom in further and further.

(None of the above three images are “exactly” self-similar.)



We can describe how to build an exactly self-similar fractal by giving a list of instructions, and instructing the builder to
repeat the instructions indefinitely.

A list of clear and precise instructions for carrying out a task is called an algorithm, and each repetition of the algorithm
is called an iteration, so we will call a list like those that follow an iterated algorithm.

Ex.: Iterated algorithm for constructing the Menger sponge.

Step 1. Begin with a cube, each of whose sides measures 1 unit in length.

Step 2. Divide the cube into 3⇥ 3⇥ 3 = 27 identical “sub-cubes”
by dividing each side into three identical squares.

Step 3. Remove the center sub-cube and the 6 sub-cubes adjacent to it.

Step 4. For each sub-cube, repeat steps 2 through 4.

Notice that Step 4 says to repeat some of the steps—including Step 4 itself! Because of this, the algorithm can never be
completed. However, as the figure below suggests, computers can draw a picture that provides detail at a smaller scale
than any scale large enough to be seen by the naked eye:



Ex.: Iterated algorithm for constructing the Sierpiński gasket.

Step 1. Begin with a triangle, each of whose sides measures 1 unit in length.

Step 2. Divide the triangle into 4 identical “sub-triangles” by dividing
each of the original triangle’s sides into two identical line segments,
and joining their endpoints as shown.

Step 3. Remove the center sub-triangle.

Step 4. For each sub-triangle, repeat steps 2 through 4.

FIGURE. From left to right, the Sierpiński gasket at stage n = 1, 2, 3, 4, 5

Ex.: Iterated algorithm for constructing the Cantor middle-thirds set.

Step 1. Begin with a line segment measuring 1 unit in length.

Step 2. Divide the line segment into 3 identical “sub-segments.”

Step 3. Remove the center sub-segment.

Step 4. For each sub-segment, repeat steps 2 through 4.

FIGURE. From top to bottom, the Cantor set at stage n = 1, 2, 3, 4, 5, 6, 7

In each of the three exactly self-similar fractal shapes we have just seen, many curious things would happen if it were
possible to repeat the procedure “infinitely many times.”1

It’s been said of the Cantor set that, in the end, “all that is left is dust.” To put it in slightly less poetic terms: After

infinitely many deletions have been carried out, the original line segment is so riddled with holes that there are no seg-

ments left intact. A similar fact is true for the Menger sponge and the Sierpiński gasket. There is no (3-dimensional)
“space” left in the sponge, nor is there any (2-dimensional space) left in the gasket. On the other hand, not every point
is deleted—infinitely many points still remain2 in the Cantor set at stage n = 1.

Incidentally, Georg Cantor su↵ered a nervous breakdown, and after studying the set he discovered, decades of graduate
students have nearly followed suit. You will not be tested on your understanding of the previous paragraph or the footnotes
in this document.

1Infinity 1 is a very slippery idea to think about. It’s not a number : the symbol 1 represents a quantity larger than every number on the
number line. It is by no means obvious what it means to tell someone to “Iterate the algorithm infinitely many times,” and the math used
to justify the “existence” of the shape produced by infinitely many iterations (thus producing a thing called a “direct limit of a sequence of
spaces”) is far, far beyond the scope of this class.

2It is a somewhat mind-bending fact that there are points still remaining in the Cantor set at stage n = 1 which are not the endpoints of
any sub-segment produced in any previous stage m < 1.



2. Measuring an exactly self-similar fractal after n iterations

Returning to the Menger sponge, we see that the shape sits in three-dimensional space. It makes sense to ask what its
volume is: that’s one way to measure the Menger sponge.

To answer this question, we will calculate the volume of the sponge at the 2nd stage, then the 3rd iteration, etc., and
see if we can spot a pattern.

(The following are two suitable test questions.)

Ex. What is the volume of the Menger sponge after the 1st iteration? (This means the second stage: that is, after doing
the algorithm once.)

Ex. What is the volume of the Menger sponge after the 2nd iteration? After the 3rd?



With each new iteration, what happens to the volume of the Menger sponge? It can in fact be shown that the volume
tends toward 0. That is, if we had an infinite amount of time to build this thing, we would eventually end up with a
shape that has a volume of 0: no “space” would be left inside the sponge.

Let’s look at the Sierpiński gasket, and see if we can measure its area. (It makes sense to talk about its area, as opposed
to its volume, because the Sierpiński gasket sits in two-dimensional space.)

(The following problem models the first several homework problems in this Chapter.)

Ex. Find the area of the Sierpiński gasket after 1 iteration, after 2 iterations, and after 3 iterations. For simplicity,
suppose that the initial triangle has area 1.



Finally, we return to the Cantor set. What is the total length of all the segments which make up the Cantor set at stage
n?

Ex. Find the total length of the Cantor set after each of the first five iterations.

(The following question goes a little bit beyond what you are expected to do on a test.)

Ex. Write a formula that gives the total length of the Cantor set after n iterations, no matter what n is. (Hint: Generalize
the answers of the previous question by creating a formula that works for the first five iterations.)



Sections 12.2 and 12.3 will NOT be covered in this class. You may skip them in your reading.

3. Complex arithmetic

Reading: None. This section of the handout provides a review of complex numbers. It should be completed

before proceeding to Section 12.4 in the textbook.

Algebraically,

i =
p
�1.

That is, when we do arithmetic with numbers like i, we stipulate to the axiom that

i2 = �1.

In a sense, that’s all i is: it’s the number which, when you multiply by itself, you get �1: that is, i⇥ i = �1. However,
this purely algebraic definition leaves us cold. It would be nice to have some geometric intuition, so that this strange
“number” i =

p
�1 might be visualized.

Geometrically, multiplying a vector v by �1 yields the vector with the same length, but in the opposite direction. (Recall
that we defined vectors in Ch. 11, Symmetry.) If we draw a point (call it the origin) and agree to draw all vectors with
their feet at this point, we see that multiplying a vector v by �1 rotates v by 180� around the origin.

In symbols,

Rorigin,180� =

✓
multiply
by �1

◆
.

We now ask: How do you do half of a rotation by 180�? Geometrically, the answer is obvious: just rotate 90� around
the origin. Doing this yields Rorigin,90� , and we know that doing this twice yields Rorigin,180� .

Algebraically, we begin with the fact that Rorigin,180� is multiplication by �1. We now invent a number, call it i, and

declare that multiplying by this number i twice is the same as multiplying by �1 (once). In symbols,

i2 ⇥ v = (i⇥ i)⇥ v

= �1⇥ v

= �v.

That is, multiplying by i is half of a rotation by 180�.

We have now explained why i2 = �1. (Notice that (�i)2 = �1 also.) But the question remains: Where is i, really?
Can we “point” to it?

The answer is, Yes! Every complex number, including i =
p
�1, is a point in the plane. If you remember the analytic

geometry you studied in high school algebra, you may regard i simply as the point (0, 1) in the xy-plane. If you don’t
remember it, you have a slight advantage in that you can focus on the interpretation we will use: namely,

i is “the point you end up at when you travel 1 unit up from the origin.”

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

i



Similarly, we think of a positive number x as “the point you end up at when you travel x units to the right from the
origin.”3

�5 �4 �3 �2 �1 1 2 3 4 5

�5
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�1

1

2

3

4

5

4

We see that multiplying by �1 rotates the given vector 180� around the origin,

�5 �4 �3 �2 �1 1 2 3 4 5

�5
�4
�3
�2
�1

1
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3

4

5

�4
�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

�i

and similarly, i⇥ 4 is the point you get when you rotate v = 4 half as much (that is, by 90�).

�5 �4 �3 �2 �1 1 2 3 4 5

�5
�4
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5
4i

You should now be able to draw a picture that shows where �4i is on your own.

3Notice that we can describe each point in the plane in terms of a vector with its foot at the origin. Indeed, this is one way to define
complex numbers: as such vectors.



We now want to define addition of these points, which we can think of as vectors with their feet at the origin. What
should addition

u+ v

of two points u and v mean?

We certainly want our new “point addition” to be the same as ordinary addition when we add ordinary numbers like 3, 4,
�7, and 0. We define addition by declaring that u+ v is the point you end up at when you start at the origin, follow the
vector for u, and from there, follow the vector for v. For example, the addition 4+ 2 can be visualized as follows.

�7�6�5�4�3�2�1 1 2 3 4 5 6 7

�7
�6
�5
�4
�3
�2
�1

1
2
3
4
5
6
7

6

Similarly, it makes sense that i+ i = 2i should be the vector “Go 2 units up from the origin,” since i is the vector “Go 1
unit up from the origin.”

�3 �2 �1 1 2 3
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�2

�1
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3

2i

Where is �4 + 2i?

�6 �5 �4 �3 �2 �1 1 2 3 4 5 6
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In general, a number of the form
x+ yi

(called a complex number) can be drawn as the vector, “Go x units to the right, and y units up,” if x and y are real
numbers, provided that we remember that if x is negative, we must instead go left, and if y is negative, we must instead
go down.

We will call x the horizontal coordinate, and y the vertical coordinate
4 of the complex number x+ yi.

To add two complex numbers, just add the horizontal coordinates to get the new horizontal coordinate, and then add the
vertical coordinates to get the new vertical coordinate. For example,

Ex. Add 1� i and �6 + 3i.

Ex. Describe the geometric e↵ect of adding two vectors. (You might answer in the form, “Start at
. . . and end up at .”)

To multiply two complex numbers is a little more complicated. Let’s say we are asked to multiply

(1� 2i)⇥ (3 + i).

You may use ordinary algebra here (e.g.,the so-called F.O.I.L. method), or you may use a grid to organize your work. The
grid is called the area model for multiplication, because each little box is filled in with the “area” of its sides.

3 +i
1 3 +i

�2i �6i �2i2

(1� 2i)⇥ (3 + i) = 3 + i� 6i� 2i2 = 3� 5i� 2i2 = 5� 5i.

4The real numbers x and y are typically called the real part and the imaginary part of z = x+ yi.



Ex. Demonstrate that multiplying by i rotates a given complex number 90� by calculating

(3� 2i)⇥ i,

and demonstrate that multiplying by �1 rotates a given complex number 180� by calculating

(3� 2i)⇥ (�1).

5. Film: Arthur C. Clarke’s Colours of Infinity

A link to this video on YouTube appears on our D2L website in the News section.

6. Mandelbrot sequences

Reading: Section 12.4

We have seen that the formula
Z = z2 + C

generates the Mandelbrot set. But how, exactly?

Recall that the picture of the Mandelbrot set we typically see assigns a color to each point in the plane. We will only use
two colors: black, and colored (the particular shade doesn’t matter, for our purposes).

To decide which color to give a certain point, we take that point as the seed: this means that we feed it into the above
equation, and then iterate the equation many times. We then determine whether the numbers we get are either (a)
getting further and further away from the origin (that is, escaping), (b) getting closer and closer (that is, attracted) to
the origin, or (c) none of the above. If the numbers we get are escaping, the original number (the seed) is not in the
Mandelbrot set.

To demonstrate the idea, we will take for a seed C = �1. This is our first term, so we call it s1, and we begin filling out
a table.

term value of sn
n = 1 s1 = �1

What’s the next term? The formula discussed in Colours of Infinity says that we have to square and add C, so that’s
what we do:

(s1)
2 = (�1)2 = 1,

so (s1)
2 + C = 1 + (�1) = 0.

Our result was 0, so we add this as the second term—call it s2—to the table.

term value of sn
n = 1 s1 = �1
n = 2 s2 = 0



We might be tempted to stop here and say that, if we start with C = �1, we get closer to 0. But before we draw this
conclusion, let’s see what happens to the next term.

To get the 3rd term, we again use the formula Z = z2 +C, squaring the previous term and adding C. For z, we use the
previous term s2 = 0, and squaring this gives 0. Now we add C = �1 to get the next term:

s3 = (s2)
2 + C = (0)2 + (�1) = �1.

Adding this to the table, we see that we are not getting closer and closer to 0.

term value of sn
n = 1 s1 = �1
n = 2 s2 = 0
n = 3 s3 = �1

In fact, if we continue “iterating”—that is, squaring and adding C = �1 to get the next term, again and again—we will
quickly discover a simple pattern. The sequence of numbers alternates between two numbers, always in the same pattern:
�1, 0,�1, 0,�1, 0, . . .

Let’s define a few vocabulary terms, so we can speak precisely about these ideas.

Choose a complex number C in the plane to be tested. The sequence of (infinitely many) numbers

s1, s2, s3, . . . ,

is called the Mandelbrot sequence with seed C if the first term is s1 = C, and every subsequent term sN is obtained
by applying the Mandelbrot formula

sN =
�
sN�1

�2
+ C

(that is, to get the new term sN , square the previous term, and add C to the result).

To draw the Mandelbrot set as a colored image, we test each point C in the plane by using it as the seed for a Mandelbrot
sequence.

• If the Mandelbrot sequence gets further and further from the origin (0 = 0 + 0i), we call the sequence escaping,
and the test point C is not in the Mandelbrot set. The points that are not in the Mandelbrot set are usually colored
with a bright or a dull color depending on how quickly the sequence gets further and further from the origin.

• Otherwise, the test point C is in the Mandelbrot set, and we color it black.

Ex. Determine whether or not the Mandelbrot sequence with seed C = 1 is escaping.

Ex. Determine whether or not the Mandelbrot sequence with seed C = �0.125 + 0.75i is escaping.



Ch. 15. Probability

1. Notation for sets

A set is a collection of objects of any type whatsoever: people, numbers, books, outcomes of
experiments, geometrical figures, etc. Thus we can speak of the set of all integers, or the set of
all oceans, or the set of all possible sums when two dice are rolled and the number of dots on the
uppermost faces are added, or the set consisting of the cities of Austin and San Marcos and all their
residents.

The objects in a set are called its members. We will often write a set using the following conventional
notation.

List all the members of the set, and then surround the list with curly braces { }.

For example
{1, 2, 3, 4, 5}

is the set of the first five counting numbers.

If we want to give the set a name, we write (symbol) = {. . . }. For example, the following sentence
says, “The set A is the set of numbers 1, 2, 3, 4, and 5.”

A = {1, 2, 3, 4, 5}.

Compare the set A to the following set:

Z = {1, 3, 5}.

Clearly every member of Z is also a member of A. When this is true of two sets, we say that Z is
a subset of A, and we write this in symbols as Z ⇢ A.

If we have two sets, call them X and Y , the union of the two sets is the set consisting of all
members of X together with all members of Y . For example, if

X = {1, 2, 3}

and
Y = {2, 4, 6},

then
X [ Y = {1, 2, 3, 4, 6}.

Notice that we do not repeat the number 2, although it shows up twice, once in X and once in Y :
in a set, we do not allow members to be repeated.

(The symbol [, pronounced “cup,” means “the union of the two sets.”)



The set consisting of all objects that are members both of X and of Y is called the intersection
(symbol: \, pronounced “cap”) of the two sets:

X \ Y = {2}.

Notice that it’s possible for the intersection to be empty! If this happens, we say the sets are
disjoint (or mutually exclusive). For example, find a pair of sets among the three sets X, Y , and
Z (defined as above) which are disjoint.

When a set has no members, we write it by writing the list of members as usual (there aren’t any,
so it’s a very short list!), and then surrounding the list with curly braces. We get

{ }

a set with no members, and we call it the empty set.

You do not need to memorize the symbols ⇢, [, and \. However, incorrect usage of curly braces
{ } and the equals symbol = is frowned upon.

2. Random experiments and sample spaces

The mathematical theory of probability describes and analyzes the behavior of an experiment whose
outcome does not follow any discernible pattern. Probability theory is a special case of set the-
ory.

A random experiment is an activity whose outcome cannot be predicted ahead of time.

Some examples of a random experiment:

• Do I win at blackjack if the values of cards in my hand add up to 18?

• If I fill a one-liter jug with river water, is the liter polluted?

• If a customer sues our company, do we win in court?

• If I flip a coin, which side lands face up?

The sample space of an experiment, which we denote by the letter S (cursive S), is the set of all
possible outcomes of a given experiment, each of which can occur exactly one way.

For emphasis, we formally define an outcome as an outcome of a random experiment which can
occur in only one way.

Ex.

Experiment: I flip a penny and a nickel, and see which side landed face up on each coin.
Outcomes: penny H and nickel H, penny H and nickel T, penny T and nickel H, penny T and nickel T
Sample space: {penny H/nickel H, penny H/nickel T, penny T/nickel H, penny T/nickel T}

Notice in particular that, the “event” that “one coin lands heads up and the other lands tails up”
is not an “outcome,” since this event can happen in more than one way.



If E is a finite set, we write |E| for the number of members of E. This number is called the
cardinality of the set E.

Ex.

Experiment: I roll an ordinary,1 fair2 die.

Sample space: The sample space S is represented by the following “set diagram”:

• •

• •

• •
S

Number of outcomes in the sample space: |S| = 6.

Ex.

Experiment: The Lakers trail the Jazz in a basketball game by a single point in the final second of
overtime, when a player on the Lakers is fouled. The fouled player goes to the line to shoot two free
throws, worth 1 point each. Which team wins the game, or is it a tie?

Sample space:

Number of outcomes in the sample space:

1By an ordinary die, we mean one with 6 sides labeled as follows: , , , , ,
2A fair die is one which is equally likely to land on any of its sides, as opposed to an unfair or loaded die.



When a random experiment is repeated, each repetition of the experiment is called a trial.

A Bernoulli experiment is a random experiment which can have exactly two outcomes. We usually
call its two outcomes success and failure.

The description of a Bernoulli experiment can always be rephrased as a yes-or-no question.

Some examples of a Bernoulli experiment:

• If our company sells a customer a one-year life insurance policy, do we have to pay out?
(success = pay out, failure = the customer survives the year)

• If a mammogram comes back positive, does the patient really have cancer? (success = patient
has cancer, failure = mammogram was a false positive)

• If I flip a coin, which side lands face up? (Rephrase this experiment as a yes-or-no question.
Which outcome should you call a success?)

Ex.

Experiment: A hockey player shoots two free shots, but she only gets to take the second shot if she
makes the first shot. Which shots does she make?

Sample space:

Number of outcomes in the sample space:

Ex.

Experiment: A gambler repeatedly plays roulette, doubling his bet each time, until he loses.
Sample space:

Number of outcomes in the sample space:



Ex.

Experiment: What numbers come up on two fair dice when rolled?

In the following table, each box represents a possible outcome of the two dice, one of which has
been colored black. Thus the table represents the sample space: each empty box is an individual
outcome.

Sample space:

Note that we treat the two dice as distinguishable (e.g., one with white dots and one with black
dots), so that the two outcomes and are di↵erent outcomes.

This method for visualizing the sample space extends in an obvious way to the experiment, “Roll
one die”:

We see that, when we roll two dice, there are outcomes in the sample space, whereas when
we roll one die, there are outcomes in the sample space.

Ex.

How many outcomes will be in the sample space for the following experiment?

What numbers come up on four fair dice when rolled?



Ex.

How many outcomes will be in the sample space for the following experiment?

What comes up when nine coins are flipped?

Ex.

Dolores is a young saleswoman planning her next business trip. She packs three di↵erent pairs of
shoes, four skirts, six blouses, and two jackets. Assuming that all these items of clothing match,
how many di↵erent outfits can Dolores make?

To solve problems like this one, we use the multiplication rule, which states:

When a process is carried out one stage at a time,
the number of ways it can be done
is found by multiplying the number of ways each of the stages can be done.



Ex.

Five candidates are running for o�ce in a club. The winner will become the President of the club, the
runner-up will become Vice President, and the third-place candidate will become the Secretary.

The sample space of this election consists of how many di↵erent outcomes?

Ex.

Dolores packs 3 pairs of shoes, 4 skirts, 3 pairs of slacks, 6 blouses, 3 turtlenecks, and 2 jackets.
As before, assume that the items are color-coordinated so that everything goes with everything
else.

We define an “outfit” as consisting of a choice of shoes, a choice of “lower wear” (a skirt or a pair
of slacks), a choice of “upper wear” (a blouse, or a turtleneck, or both), and a choice of whether or
not to wear a jacket.

How many such outfits can Dolores make?



3. Counting for non-beginners: Permutations and combinations

For some experiments, the multiplication rule tells us how many outcomes are in the sample space.
In fact, the multiplication rule is just one of many techniques for counting.

Of course none of us are complete beginners at counting. One technique which all of us have
certainly mastered is the brute force, or roster technique for counting: to count the members
of a set, list each member of the set exactly once (or draw a set diagram in which each member
appears exactly once), and count the members by hand. This technique is always an option for us
when we are faced with counting problems.

However, for the types of counting problems we will encounter, brute force is both tedious and
error-prone. Both disadvantages stem from the fact that it is often quite hard to list (for example)
all the outcomes of an experiment, unless one has a systematic way of listing them (such as a tree
diagram).

We have already seen a second technique for counting: the multiplication rule tells how to count
the number of ways a process with many stages can be completed, provided that we are given the
number of ways to complete each stage.

The next example requires a third technique.

Ex.

Baskin-Robbins o↵ers 31 flavors of ice cream. We will use the name true double to mean two scoops
of ice cream of two di↵erent flavors. Count the number of true doubles available at Baskin-Robbins.

Now, the multiplication rule gives 31⇥ 30 = 930, but this is not correct. Explain why.

What is the actual number of true doubles available at Baskin-Robbins?



We take the example one step further.

Ex.

What is the actual number of true triples available at Baskin-Robbins?

We will answer this question by first answering two questions:

(A) How many choices are there for the first scoop, the second scoop, and the third scoop?

(B) How many choices of all three scoops result in the same bowl of ice cream?

(A)

Use the multiplication rule to count the number of ways to carry out the process:

(1) choose a flavor for the first scoop,

(2) choose a di↵erent flavor for the second scoop, and

(3) a third flavor (di↵erent from the first two) for the third scoop.

(B)

How many ways are there to put three flavors X, Y and Z in an order?

Use your answers to (A) and (B) to count the number of true triples available at Baskin-Robbins.
(There is a strong analogy here to the process of counting distinct Hamilton circuits!)



Ex.

How many ways are there to form a 3-person committee from a group of 6 people?

Ex.

A poker player is dealt five cards from a 52 card deck, one face down and four face up. How many
di↵erent outcomes are possible?

Ex.

How many passwords of between 3 and 5 characters are possible using the characters @, $, *, #,
and %, assuming you are allowed to repeat a character more than once?



Ex.

Ten chairs are arranged in a circle. Count the number of di↵erent ways to seat 10 people in the 10
chairs.

Ex.

A college student must choose 3 out of the following 6 classes when registering for next semester’s
classes.

algebra English history
Spanish chemistry gym

Assuming that the college o↵ers exactly one section of each class, count how many di↵erent schedules
are possible.

We now summarize two of the di↵erent counting techniques we have developed over the course of
working the above example.

An arrangement of r slots is a choice of r things from a set consisting of n di↵erent objects.

A permutation is an ordered arrangement. A combination is an unordered arrangement.

The number nPr stands for,

the number of ways to fill r slots, in order, choosing from n di↵erent objects.

The number nCr stands for,

the number of ways to fill r slots, without regard to order, choosing from n di↵erent objects.



Formulas for the numbers nCr and nPr appear in the book on page 519, but you are encouraged to
instead memorize how to compute nPr, and then use the formula

nCr =
(number of ordered arrangements of r choices from n objects)

(number of di↵erent ways to put r things in an order)
= nPr

r!

when necessary.

What counting technique is used to compute nPr, the number of ways to choose r things in order
from a pool of n objects?

Ex.

In the Massachusetts State Lottery, a ticketholder chooses 5 numbers from 1 through 55. The
winning numbers are given in order, e.g. 17 � 29 � 36 � 53 � 55. Count the number of ways
. . .

1. . . . to choose 6 numbers.

2. . . . to choose 6 numbers in order.



4. Pascal’s triangle.

The figure below is known as Pascal’s triangle. To find nCr, count down to the nth row (when
counting, start at 0 as shown!). The rth hexagon in that row (again, start counting at 0) is the
value of nCr.

Ex.

3C2 =
3!

2! 1!
= 3 =

3!

1! 2!
= 3C1.

4C2 =
4!

2! 2!
=

4⇥ 3⇥ 2⇥ 1

(2⇥ 1)(2⇥ 1)
=

24

4
= 6.

Ex.
Given the fact that nCr = nPr ÷ r!, how can you use Pascal’s triangle to find nPr quickly? (By
“quickly,” I mean, “using one of the four basic arithmetic operations at most r times.”)

If time allows, your instructor will give a detailed demonstration of how to construct Pascal’s triangle.
If not, consider the following verbal instructions.

The top row is called Row 0. It contains just one entry, a 1. The second row, Row 1, contains two
hexagonal positions, and each is filled in with 1.

To fill out the next row, fill in the first and last hexagons with a 1, and for each of the other hexagons
in the row, add the two entries immediately above. For example, in the middle hexagon on row 2,
we add the 1 above and to the left of it, and the 1 above and to the right of it, to get 2. The
process described in this paragraph may be repeated indefinitely.



The following is taken from the following website.

http://people.bath.ac.uk/sjb37/patterns.html

Many, many patterns emerge in Pascal’s triangle. As shown, the number 1 is repeated along the
leftmost diagonal of the triangle, the counting numbers run along the second-leftmost diagonal, and
the triangular numbers appear on the diagonal after that.

“There are two definitions of triangular numbers, one informal one (but which explains the
name) and one which is more formal. I will state the formal definition:

A triangular number is a number obtained by adding all positive integers less than or equal
to a given positive integer n. The triangular number

Tn = n + (n� 1) + (n� 2) + (n� 3) + · · · + 2 + 1

is therefore an additive analogue of the factorial

n! = n⇥ (n� 1)⇥ (n� 2)⇥ (n� 3)⇥ · · ·⇥ 2⇥ 1.”

As we write out more and more rows of Pascal’s Triangle, coloring odd numbers black, and even
numbers white, we get an increasingly more detailed picture of the fractal known as Sierpiński’s
Triangle.

Above: The first few iterations of Sierpiński’s Triangle.
Below: The first several rows of Pascal’s Triangle, colored by parity (i.e. even-or-oddness).



5. Probability spaces.

Like several of the branches of mathematics we have explored during this semester, probability
theory is a relatively young science. The theory wasn’t stated cohesively until the 1930s, when
the mathematician A. N. Kolmogorov developed a formal system which for the first time made
precise what exactly a “probability” is. We will not delve into Kolmogorov’s work—to do so is
beyond the scope of an undergraduate course—but we will explain some of the most important
ideas incorporated in the formal system used nowadays for probability theory.

Suppose S and T are two sets. A function P : S ! T (pronounced: “a function P from S to T”)
is a rule which assigns to each member of S exactly one member of T . The rule may be specified
by a verbal description, a table, or by an equation (if the sets involve numbers, which need not be
the case).

For example, the following table defines a function which assigns a price to each food product sold
at McDonald’s. Here, S is the set of food products, and T is the set of prices.

food product X price P(X)
bacon cheeseburger $2.79

vanilla shake $1.39
apple pie $0.99

double cheeseburger $0.99

Our notation for functions is as follows. To say the following sentence in symbols,

“The price assigned to apple pie by the function P is $2.79.”

we write simply
P(apple pie) = $2.79,

placing the member X of S in parentheses, and writing the number assigned to X on the right hand
side of the equals symbol.

Let S be the sample space for a random experiment. Each subset of S is called an event.

A probability assignment is a rule which assigns a number Pr(E) between 0 and 1 (where each
of 0 and 1 is allowed) to each event E in the sample space.

To put it more tersely: a probability assignment is a function from the set of all events to the set
of real numbers no less than 0 and no more than 1.

To keep all these vocabulary words straight, consider the following table, which lists equivalent ideas
on the same row.

set theory probability theory
universal set S sample space S

subset of S event
member of S outcome

Recall that an outcome can only happen in one way—see the first example in section 2 of this
document. The primary use of “events” is to collect all the di↵erent ways (i.e. outcomes) a thing
can happen (e.g. “both coins land heads up”).



Ex.
Suppose that one ordinary die is rolled. Identify the event E consisting of all outcomes in which an
even number comes up. . .

(i) . . . by drawing a circle in the set diagram provided, and

(ii) . . . by writing out the set using symbols only (that is, using correct set notation) in the space
below the set diagram.

• •

• •

• •
S

Ex.
Suppose that one ordinary die is rolled. Identify the event F consisting of all outcomes in which the
number does not come up. . .

(i) . . . by drawing a circle in the set diagram provided, and

(ii) . . . by writing out the set using symbols only (that is, using correct set notation) in the space
below the set diagram.

• •

• •

• •
S



Now, if the experiment is rolling an ordinary, fair die, then each side of the die is equally likely to
come up. It follows3 that the probabilities of rolling each side are given by the following table.

event E probability Pr(E)

{ } 1/6

{ } 1/6

{ } 1/6

{ } 1/6

{ } 1/6

{ } 1/6

A probability space is two things:

• . . . a sample space S, and

• . . . a probability assignment, i.e. a rule which assigns to each subset E of S a number called
the probability Pr(E) of event E, which must be no less than 0 = 0% and no more than
1 = 100%.

Okay, but how do we find the probability Pr(E) for a given event? We define the probability of
an event E to be the sum of the probabilities of each outcome in E.

We see that, for the experiment of rolling one ordinary, fair die, the sample space is just the set
S = { , , , , , }, and the probability assignment determined by the above table.

Ex. In the probability space described above, what is the probability of the event { , }.

3We will not study the “axioms” of probability theory, but it is from these axioms that the conclusion in the
footnoted sentence follows. We explain: One important axiom is that the probability of the sample space S itself is
1 = 100%. If there are exactly 6 outcomes in the sample space, and each is equally likely, it must be the case that
each outcome has probability 1/6 = 162

3%, because an outcome can happen in only one way, and because of another
axiom, namely, that the sum of the probabilities of each individual outcome must total 1 = 100%.



Instructions: The experiment for exercises #1–#5 is rolling two 6-sided dice. For each event, first shade the boxes

which correspond to the given event. Then find the probability of the given event. Note: “One” means “at least

one.”

#1.
A = set of outcomes in which the total number of dots on the sides facing up is 10.

Pr(A) =

#2.
B = set of outcomes in which (at least) one die comes up 3.

Pr(B) =

#3.
C = set of outcomes in which one die comes up 3, and one die comes up even.

Pr(C) =

#4.
D = set of outcomes in which one die comes up odd, and one die comes up as a number divisible by 3.

Pr(D) =

#5.
G = set of outcomes in which neither die comes up 3.

Pr(G) =



The situation is quite di↵erent when the outcomes of an experiment are not equally likely.

For example, Steve Nash is exceptionally good at shooting free throws. Over the course of his career, he has
successfully made 90% of his free throws. Here, the sample space for the experiment of taking one free throw
is

S = {succeeds to make the free throw, fails to make the free throw},

but the probability of success is not 1/2. (What is the probability of success? What is the probability of failure?)

Ex.
Consider the following experiment:

Amy buys a single $1 lottery ticket.

Suppose that the probabilities of each possible outcome are given by the following table.

event E probability Pr(E)

win one free ticket 1/6

win $10 1/50

win $1, 000 1/5, 000

win $1, 000, 000 1/5, 000, 000

(a) What is the probability that Amy wins more than $300?

(b) What is the probability that Amy does not win anything? (Give your answer as a decimal.)

The examples we have seen suggest the following definition and formula.

The set B consisting of all members of S except the members of a given event A is called the complement of A.
We say that A and B are complementary.

If A is an event, and B is the complement of A, then Pr(B) = 1� Pr(A).


